Multi-modal MRI measures reveal sensory abnormalities in major depressive disorder patients: A surface-based study
•The major depressive disorder patients (MDD) showed decreased cortical volume in the superior temporal gyrus (STG) and middle temporal gyrus (MTG) than controls.•The MDD patients showed decreased surface area in the bilateral STG, temporal pole gyrus, entorhinal cortex, left inferior temporal gyrus...
Saved in:
Published in | NeuroImage clinical Vol. 39; p. 103468 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-1582 2213-1582 |
DOI | 10.1016/j.nicl.2023.103468 |
Cover
Summary: | •The major depressive disorder patients (MDD) showed decreased cortical volume in the superior temporal gyrus (STG) and middle temporal gyrus (MTG) than controls.•The MDD patients showed decreased surface area in the bilateral STG, temporal pole gyrus, entorhinal cortex, left inferior temporal gyrus, and fusiform gyrus than the controls.•The MDD patients exhibited lower functional connectivity (FC) between STG/MTG and regions of the visual network than controls.•The structural and functional findings involving the sensory processing areas showed a good classification between the MDD patients and controls.
Multi-modal magnetic resonance imaging (MRI) measures are supposed to be able to capture different brain neurobiological aspects of major depressive disorder (MDD). A fusion analysis of structural and functional modalities may better reveal the disease biomarker specific to the MDD disease.
We recruited 30 MDD patients and 30 matched healthy controls (HC). For each subject, we acquired high-resolution brain structural images and resting-state fMRI (rs-fMRI) data using a 3 T MRI scanner. We first extracted the brain morphometric measures, including the cortical volume (CV), cortical thickness (CT), and surface area (SA), for each subject from the structural images, and then detected the structural clusters showing significant between-group differences in each measure using the surface-based morphology (SBM) analysis. By taking the identified structural clusters as seeds, we performed seed-based functional connectivity (FC) analyses to determine the regions with abnormal FC in the patients. Based on a logistic regression model, we performed a classification analysis by selecting these structural and functional cluster-wise measures as features to distinguish the MDD patients from the HC.
The MDD patients showed significantly lower CV in a cluster involving the right superior temporal gyrus (STG) and middle temporal gyrus (MTG), and lower SA in three clusters involving the bilateral STG, temporal pole gyrus, and entorhinal cortex, and the left inferior temporal gyrus, and fusiform gyrus, than the controls. No significant difference in CT was detected between the two groups. By taking the above-detected clusters as seeds to perform the seed-based FC analysis, we found that the MDD patients showed significantly lower FC between STG/MTG (CV’s cluster) and two clusters located in the bilateral visual cortices than the controls. The logistic regression model based on the structural and functional features reached a classification accuracy of 86.7% (p < 0.001) between MDD and controls.
The present study showed sensory abnormalities in MDD patients using the multi-modal MRI analysis. This finding may act as a disease biomarker distinguishing MDD patients from healthy individuals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2213-1582 2213-1582 |
DOI: | 10.1016/j.nicl.2023.103468 |