Callosal and subcortical white matter alterations in schizophrenia: A diffusion tensor imaging study at multiple levels
Diffusion tensor imaging and its distinct capability to detect micro-structural changes in vivo allows the exploration of white matter (WM) abnormalities in patients who have been diagnosed with schizophrenia; however, the results regarding the anatomical positions and degree of abnormalities are in...
Saved in:
Published in | NeuroImage clinical Vol. 20; pp. 594 - 602 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-1582 2213-1582 |
DOI | 10.1016/j.nicl.2018.08.027 |
Cover
Summary: | Diffusion tensor imaging and its distinct capability to detect micro-structural changes in vivo allows the exploration of white matter (WM) abnormalities in patients who have been diagnosed with schizophrenia; however, the results regarding the anatomical positions and degree of abnormalities are inconsistent. In order to obtain more robust and stable findings, we conducted a multi-level analysis to investigate WM disruption in a relatively large sample size (142 schizophrenia patients and 163 healthy subjects). Specifically, we evaluated the univariate fractional anisotropy (FA) in voxel level; the bivariate pairwise structural connectivity between regions using deterministic tractography as the network node defined by the Human Brainnetome Atlas; and the multivariate network topological properties, including the network hub, efficiency, small-worldness, and strength. Our data demonstrated callosal and subcortical WM alterations in patients with schizophrenia. These disruptions were evident in both voxel and connectivity levels and further supported by associations between FA values and illness duration. Based on the findings regarding topological properties, the structural network showed weaker global integration in patients with schizophrenia than in healthy subjects, while brain network hubs showed decreased functionality. We replicated these findings using an automated anatomical labeling atlas to define the network node. Our study indicates that callosal and subcortical WM disruptions are biomarkers for chronic schizophrenia.
•Combine voxel-based analysis and diffusion tractography methods to detect white matter abnormalities in schizophrenia.•We find schizophrenia white matter disruption in voxel level, connectivity level and network level.•Callosal and subcortical white matter disruptions could be the biomarkers for chronic schizophrenia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2213-1582 2213-1582 |
DOI: | 10.1016/j.nicl.2018.08.027 |