New machine learning method for image-based diagnosis of COVID-19

COVID-19 is a worldwide epidemic, as announced by the World Health Organization (WHO) in March 2020. Machine learning (ML) methods can play vital roles in identifying COVID-19 patients by visually analyzing their chest x-ray images. In this paper, a new ML-method proposed to classify the chest x-ray...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 6; p. e0235187
Main Authors Elaziz, Mohamed Abd, Hosny, Khalid M., Salah, Ahmad, Darwish, Mohamed M., Lu, Songfeng, Sahlol, Ahmed T.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.06.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0235187

Cover

More Information
Summary:COVID-19 is a worldwide epidemic, as announced by the World Health Organization (WHO) in March 2020. Machine learning (ML) methods can play vital roles in identifying COVID-19 patients by visually analyzing their chest x-ray images. In this paper, a new ML-method proposed to classify the chest x-ray images into two classes, COVID-19 patient or non-COVID-19 person. The features extracted from the chest x-ray images using new Fractional Multichannel Exponent Moments (FrMEMs). A parallel multi-core computational framework utilized to accelerate the computational process. Then, a modified Manta-Ray Foraging Optimization based on differential evolution used to select the most significant features. The proposed method evaluated using two COVID-19 x-ray datasets. The proposed method achieved accuracy rates of 96.09% and 98.09% for the first and second datasets, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0235187