计及风电场并网的机会约束规划的机组组合优化
由于风电出力的随机性,提出一种基于机会约束规划的含风电场的机组组合优化模型.该模型在考虑系统约束和发电机自身约束条件下,采用混沌离散粒子群优化算法安排机组的启停策略,再利用混沌文化粒子群优化算法实现负荷的经济分配.在此基础上,建立了以燃料耗量及污染气体排放量为最小的多目标优化模型,并引入蒙特卡洛随机模拟技术对机会约束条件进行校验,分析了机会约束条件在不同置信度要求下协调方案利润和风险的优势,为调度人员根据实际情况协调风险、利润及环境因素,实现最优化决策提供参考.1个风电场和10台火电机组的仿真试验证明了该方法的正确性和有效性....
Saved in:
| Published in | 广东工业大学学报 Vol. 34; no. 1; pp. 50 - 54 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
广东工业大学自动化学院,广东广州,510006%国网江西省电力公司萍乡市安源区供电分公司,江西萍乡,337000%国网江西萍乡供电分公司,江西萍乡,337000
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-7162 |
| DOI | 10.12052/gdutxb.160087 |
Cover
| Summary: | 由于风电出力的随机性,提出一种基于机会约束规划的含风电场的机组组合优化模型.该模型在考虑系统约束和发电机自身约束条件下,采用混沌离散粒子群优化算法安排机组的启停策略,再利用混沌文化粒子群优化算法实现负荷的经济分配.在此基础上,建立了以燃料耗量及污染气体排放量为最小的多目标优化模型,并引入蒙特卡洛随机模拟技术对机会约束条件进行校验,分析了机会约束条件在不同置信度要求下协调方案利润和风险的优势,为调度人员根据实际情况协调风险、利润及环境因素,实现最优化决策提供参考.1个风电场和10台火电机组的仿真试验证明了该方法的正确性和有效性. |
|---|---|
| Bibliography: | energy conservation; unit commitment optimization; chaos cultural particle swarm optimization; chance-constrained programming 44-1428/T Because of the random nature of wind power output,a unit commitment optimization model with windfarm based on chance-constrained programming is proposed.The constraints of both power system and generatorare considered.Chaos Discrete Particle Swarm Optimization algorithm(CDPSO)is used to arrange thermal unitcommitment startup and shutdown and cultural chaos particle swarm optimization algorithm(CCPSO)is proposedto solve economic load dispatch.Based on it,Multi-objective optimization unit commitment optimization problemin wind power integrated system under the energy saving and lower emission is considered.The Monte Carlostochastic simulation techniques verified opportunity constraints and the superiority of opportunities constraintscoordination programs profit and risk under different confidence level are analyzed.It provides a new way ofthinking to coordinating profit,risk and |
| ISSN: | 1007-7162 |
| DOI: | 10.12052/gdutxb.160087 |