GPU集群加速近似逆预条件CG并行求解器

TP338.6; 针对GPU集群系统,研究了分解近似逆(approximate inverse,AINV)和对称逐次超松弛-近似逆(sym-metric successive over relaxation approximate inverse,SSOR-AI)两类近似逆预条件的并行算法。采用多级k-路图划分方法,通过子图的内点和边界点识别方法以及稀疏矩阵的置换技术,提出了将稀疏矩阵转换为分块箭形矩阵的并行方法。基于所形成的分块箭形矩阵,结合块内稀疏矩阵近似逆串行、块间并行的策略给出了近似逆预条件的并行方法,实现了AINV和SSOR-AI并行算法,解决了AINV预条件难以并行的问题。基于CP...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 no. 9; pp. 1084 - 1092
Main Authors 赵莲, 赵永华, 陈尧, 赵慰
Format Journal Article
LanguageChinese
Published 中国科学院 计算机网络信息中心,北京 100190 2015
中国科学院大学,北京 100190%中国科学院 计算机网络信息中心,北京,100190
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1412060

Cover

Abstract TP338.6; 针对GPU集群系统,研究了分解近似逆(approximate inverse,AINV)和对称逐次超松弛-近似逆(sym-metric successive over relaxation approximate inverse,SSOR-AI)两类近似逆预条件的并行算法。采用多级k-路图划分方法,通过子图的内点和边界点识别方法以及稀疏矩阵的置换技术,提出了将稀疏矩阵转换为分块箭形矩阵的并行方法。基于所形成的分块箭形矩阵,结合块内稀疏矩阵近似逆串行、块间并行的策略给出了近似逆预条件的并行方法,实现了AINV和SSOR-AI并行算法,解决了AINV预条件难以并行的问题。基于CPU与GPU协同计算、主机端页锁定内存和设备端计算与通信重叠的优化技术,实现了并行近似逆预条件与共轭梯度(conjugate gradient,CG)算法相结合的线性方程组混合并行求解器。数值实验表明,所提方法对AINV和SSOR-AI两类近似逆预条件,在多GPU上获得了很好的可扩展性和加速效果。
AbstractList TP338.6; 针对GPU集群系统,研究了分解近似逆(approximate inverse,AINV)和对称逐次超松弛-近似逆(sym-metric successive over relaxation approximate inverse,SSOR-AI)两类近似逆预条件的并行算法。采用多级k-路图划分方法,通过子图的内点和边界点识别方法以及稀疏矩阵的置换技术,提出了将稀疏矩阵转换为分块箭形矩阵的并行方法。基于所形成的分块箭形矩阵,结合块内稀疏矩阵近似逆串行、块间并行的策略给出了近似逆预条件的并行方法,实现了AINV和SSOR-AI并行算法,解决了AINV预条件难以并行的问题。基于CPU与GPU协同计算、主机端页锁定内存和设备端计算与通信重叠的优化技术,实现了并行近似逆预条件与共轭梯度(conjugate gradient,CG)算法相结合的线性方程组混合并行求解器。数值实验表明,所提方法对AINV和SSOR-AI两类近似逆预条件,在多GPU上获得了很好的可扩展性和加速效果。
Abstract_FL This paper shows the study on the parallel algorithm of AINV (approximate inverse) and SSOR-AI (sym-metric successive over relaxation approximate inverse) preconditioners on GPU cluster systems. With multilevel k-way graph partitioning, this paper proposes the parallel method which can transform a sparse matrix into block arrow form based on a method to identify interior/boundary vertex of subgraphs and a permutation. Based on the block arrow matrix, with the strategy of sequential computation approximate inverse of inner block and parallel computation between the different blocks, the parallel algorithm of AINV and SSOR-AI is obtained. Based on the optimization techniques of collaborative computing between CPU and GPU, page-locked host memory and overlapping transfers with computation on device, this paper combines parallel approximate inverse preconditioner with CG (conjugate gradient) algorithm to obtain a hybrid parallel solver for linear systems. Numerical experiments indicate that applying the above methods can obtain very good acceleration effect and scalability both AINV parallel implementation and SSOR-AI parallel implementation on cluster-GPU.
Author 赵慰
赵永华
赵莲
陈尧
AuthorAffiliation 中国科学院 计算机网络信息中心,北京 100190; 中国科学院大学,北京 100190%中国科学院 计算机网络信息中心,北京,100190
AuthorAffiliation_xml – name: 中国科学院 计算机网络信息中心,北京 100190; 中国科学院大学,北京 100190%中国科学院 计算机网络信息中心,北京,100190
Author_FL ZHAO Lian
ZHAO Wei
ZHAO Yonghua
CHEN Yao
Author_FL_xml – sequence: 1
  fullname: ZHAO Lian
– sequence: 2
  fullname: ZHAO Yonghua
– sequence: 3
  fullname: CHEN Yao
– sequence: 4
  fullname: ZHAO Wei
Author_xml – sequence: 1
  fullname: 赵莲
– sequence: 2
  fullname: 赵永华
– sequence: 3
  fullname: 陈尧
– sequence: 4
  fullname: 赵慰
BookMark eNrjYmDJy89LZWBQMDTQMzY3t9DP0sssLs7TMzQzN9a1NDG00DM0MTQyMDNgYeCEi3Ew8BYXZyYZmJqYGBmam1lwMhi5B4S-nN32fN-Sp10LXjbMf7F_4pM9e142tL1c1PJs7sInu7c5uz_due3Fwp5nG5teLF_8dOYKHgbWtMSc4lReKM3NEOLmGuLsoevj7-7p7Oijm2xmaKmbapmaBLQi1cjSzDzJwDw52dzA3MjA0NDC1NLIJMUsycQkxcgIpCQpDehKszQzC4MkC2NToIbUZAuDVBNjbgZNiLHliXlpiXnp8Vn5pUV5QAvjs4qzsisqS4qBxpkaWBoYWBoDAKmLWbk
ClassificationCodes TP338.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1412060
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Approximate Inverse Preconditioned CG Parallel Solver on GPU Cluster
EndPage 1092
ExternalDocumentID jsjkxyts201509009
GrantInformation_xml – fundername: The National Basic Research Program of China under Grant No.2011CB309702(国家重点基础研究发展计划; the Open Project of State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2014A03
  funderid: (973计划)); the Open Project of State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2014A03
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-c619-e9eb176e2967b07cc707201185924d6b44d22eb17bf2066f680b8356e2ec80e43
ISSN 1673-9418
IngestDate Thu May 29 04:00:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 预条件
迭代法
异构并行计算
GPU集群
heterogeneous parallel computing
approximate inverse
preconditioner
iterative method
GPU cluster
近似逆
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c619-e9eb176e2967b07cc707201185924d6b44d22eb17bf2066f680b8356e2ec80e43
PageCount 9
ParticipantIDs wanfang_journals_jsjkxyts201509009
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2015
Publisher 中国科学院 计算机网络信息中心,北京 100190
中国科学院大学,北京 100190%中国科学院 计算机网络信息中心,北京,100190
Publisher_xml – name: 中国科学院大学,北京 100190%中国科学院 计算机网络信息中心,北京,100190
– name: 中国科学院 计算机网络信息中心,北京 100190
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.004298
Snippet TP338.6; 针对GPU集群系统,研究了分解近似逆(approximate inverse,AINV)和对称逐次超松弛-近似逆(sym-metric successive over relaxation approximate...
SourceID wanfang
SourceType Aggregation Database
StartPage 1084
Title GPU集群加速近似逆预条件CG并行求解器
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201509009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNR68SKKit8UcU4ldZLM53GSTbYIioct9FY2m0SpZQV3F7QHKSI9iBePIqJVQa9eCmLRP9Otu__C9ybp7rauWIXsMJn35s1785KZN7Pz8hznelMyrqjOXMZk02VcczctgtQtiiLTYM5yleHWwK3bYnGJ3VzmyzPH1iZOLfW66UJrfapfyf9oFcpAr-gl-w-aHRGFAsiDfiEFDUN6JB3X7yyRWBMdEiVILEkYE8NIzIkyxFAE4TmGhMSKhAnRHokZCSO8ShDW0sT4REEtQXSNmBInJKGI6kgp1JBFAgBREWKFkPFtiSQmQBwNNNSklWuhsSUmMaOlJQ8tG1siLS-cGGhQ2AYVUTHiQArsoCgMMvtPgxWA4xVbxHAaBDijSAjFrwHWGEUjh8pCAMXIqZUVAif3QEr_T_u8ViwCuygtdE5tmhi2GePP_0V6qKwtCHoZCpF0YpGBB4-Y5EBjAFLQxwnqDLufY4oEGVIz0Tx-3KqMhFpNLUIGrmbj2aa3f56-nDo8WsbKq8wQj5YxAg9PcYGUyk5xSHRhRBRmPM-nZWiGQx8QX-2s3n_0uNvBjqPaerse93H3Cg-6PonHxhqM53pysYn37IDXM1i3o9EbIw8IPjZ-4TZQVIyMY-4FEv_UG90zBsvf0jd1n-vyaB2KdONPAllnunbRbN-dsPsap5yT1YJtzpRv32lnZv3eGceHN2_4evPn94_95--GG28HP17u7uwMNzaH75_tvdna_bYd1ftftwdbL_a-PB18-tB_9fms00jiRrToVtFH3Bb0jZtrsGKkyH0tZEplqyWpRGNZce2zTKSMZb6PKGmBEREKoWgKqxmokLcUzVlwzpltP2jn5505ndMgayKBgDEtdBN-YGgU0Cc5Hhu44FyrRFypBpfOym9Ku3gUpEvOCcyXW4SXndnuw15-BYzmbnrV6voX--2I_w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU%E9%9B%86%E7%BE%A4%E5%8A%A0%E9%80%9F%E8%BF%91%E4%BC%BC%E9%80%86%E9%A2%84%E6%9D%A1%E4%BB%B6CG%E5%B9%B6%E8%A1%8C%E6%B1%82%E8%A7%A3%E5%99%A8&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E8%B5%B5%E8%8E%B2&rft.au=%E8%B5%B5%E6%B0%B8%E5%8D%8E&rft.au=%E9%99%88%E5%B0%A7&rft.au=%E8%B5%B5%E6%85%B0&rft.date=2015&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83%EF%BC%8C%E5%8C%97%E4%BA%AC+100190&rft.issn=1673-9418&rft.issue=9&rft.spage=1084&rft.epage=1092&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1412060&rft.externalDocID=jsjkxyts201509009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg