smORFunction: a tool for predicting functions of small open reading frames and microproteins
Background Small open reading frame (smORF) is open reading frame with a length of less than 100 codons. Microproteins, translated from smORFs, have been found to participate in a variety of biological processes such as muscle formation and contraction, cell proliferation, and immune activation. Alt...
Saved in:
Published in | BMC bioinformatics Vol. 21; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
14.10.2020
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-020-03805-x |
Cover
Summary: | Background
Small open reading frame (smORF) is open reading frame with a length of less than 100 codons. Microproteins, translated from smORFs, have been found to participate in a variety of biological processes such as muscle formation and contraction, cell proliferation, and immune activation. Although previous studies have collected and annotated a large abundance of smORFs, functions of the vast majority of smORFs are still unknown. It is thus increasingly important to develop computational methods to annotate the functions of these smORFs.
Results
In this study, we collected 617,462 unique smORFs from three studies. The expression of smORF RNAs was estimated by reannotated microarray probes. Using a speed-optimized correlation algorism, the functions of smORFs were predicted by their correlated genes with known functional annotations. After applying our method to 5 known microproteins from literatures, our method successfully predicted their functions. Further validation from the UniProt database showed that at least one function of 202 out of 270 microproteins was predicted.
Conclusions
We developed a method, smORFunction, to provide function predictions of smORFs/microproteins in at most 265 models generated from 173 datasets, including 48 tissues/cells, 82 diseases (and normal). The tool can be available at
https://www.cuilab.cn/smorfunction
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-020-03805-x |