带空间约束的邻域中值加权FCM图像分割算法

在聚类分析过程中,欧氏距离是最为常用的距离度量方法,而传统的基于欧氏距离的图像分割方法没有综合考虑空间信息和邻域特征等因素。提出了一种用邻域中值加权欧氏距离替代欧氏距离的度量方法,同时植入像素空间约束信息,这样可以利用更多的图像空间信息来改善图像分割质量。通过对多幅图像的分割实验结果表明,与已有的算法相比,本算法不仅能提升图像分割效果,具有更好的噪声抵抗性,同时能加速算法的收敛速度,从而提高了分割效率。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 39; no. 5; pp. 931 - 935
Main Author 杨军 柯运生 王茂正
Format Journal Article
LanguageChinese
Published 兰州交通大学电子与信息工程学院,甘肃兰州,730070%兰州交通大学自动化与电气工程学院,甘肃兰州,730070 2017
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2017.05.017

Cover

More Information
Summary:在聚类分析过程中,欧氏距离是最为常用的距离度量方法,而传统的基于欧氏距离的图像分割方法没有综合考虑空间信息和邻域特征等因素。提出了一种用邻域中值加权欧氏距离替代欧氏距离的度量方法,同时植入像素空间约束信息,这样可以利用更多的图像空间信息来改善图像分割质量。通过对多幅图像的分割实验结果表明,与已有的算法相比,本算法不仅能提升图像分割效果,具有更好的噪声抵抗性,同时能加速算法的收敛速度,从而提高了分割效率。
Bibliography:YANG Jun1 ,KE Yun-sheng1 ,WANG Mao-zheng2 (1. School of Electronic and Information Engineering, Lanzhou J iaotong University, Lanzhou 730070; 2. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070 ,China)
clustering ; Euclidean distance ; image segmentation ; neighborhood median weight; spatialconstraints
43-1258/TP
Euclidean distance is the most commonly used distance measurement method in the process of clustering analysis. The traditional Euclidean distance image segmentation method does not consider the spatial information, neighborhood characteristics and other factors. In order to use more image space information to improve the quality of image segmentation, in addition to implanting spatial constraints information of pixels, we propose an alternative neighborhood median weighted Euclidean distance to re- place the Euclidean distance. The results of segmentation experiments on multiple images show that
ISSN:1007-130X
DOI:10.3969/j.issn.1007-130X.2017.05.017