Nano-microbubble flotation of fine and ultrafine chalcopyrite particles

As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mining science and technology Vol. 24; no. 4; pp. 559 - 566
Main Authors Ahmadi, Rahman, Khodadadi, Darban Ahmad, Abdollahy, Mahmoud, Fan, Maoming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2014
Department of Mineral Processing Engineering, Tarbiat Modares University, Tehran 111-14115, Iran%EFD, Eriez Manufacturing Co., Erie, PA, USA
Elsevier
Subjects
Online AccessGet full text
ISSN2095-2686
DOI10.1016/j.ijmst.2014.05.021

Cover

More Information
Summary:As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
Bibliography:32-1827/TD
Nanobubbles Nano-microbubble Bubble size distribution Chalcopyrite Froth flotation Fine particles
Ahmadi Rahman , Khodadadi Darban Ahmad , Abdollahy Mahmoud , Fan Maoming( 1 Department of Mineral Processing Engineering, Tarbiat Modares University, Tehran 111-14115, Iran ;2 EFD, Eriez Manufacturing Co., Erie, PA, USA)
As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
ISSN:2095-2686
DOI:10.1016/j.ijmst.2014.05.021