Contingency learning in human fear conditioning involves the ventral striatum

The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 30; no. 11; pp. 3636 - 3644
Main Authors Klucken, Tim, Tabbert, Katharina, Schweckendiek, Jan, Merz, Christian Josef, Kagerer, Sabine, Vaitl, Dieter, Stark, Rudolf
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2009
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.20791

Cover

Abstract The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies ( n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.
The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.
The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed. Hum Brain Mapp, 2009.
The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.
Author Schweckendiek, Jan
Merz, Christian Josef
Kagerer, Sabine
Tabbert, Katharina
Vaitl, Dieter
Klucken, Tim
Stark, Rudolf
AuthorAffiliation 2 Department of Cognitive Psychology, Ruhr‐University Bochum, Bochum, Germany
1 Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
AuthorAffiliation_xml – name: 1 Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– name: 2 Department of Cognitive Psychology, Ruhr‐University Bochum, Bochum, Germany
Author_xml – sequence: 1
  givenname: Tim
  surname: Klucken
  fullname: Klucken, Tim
  email: Tim.Klucken@psychol.uni-giessen.de
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 2
  givenname: Katharina
  surname: Tabbert
  fullname: Tabbert, Katharina
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 3
  givenname: Jan
  surname: Schweckendiek
  fullname: Schweckendiek, Jan
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 4
  givenname: Christian Josef
  surname: Merz
  fullname: Merz, Christian Josef
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 5
  givenname: Sabine
  surname: Kagerer
  fullname: Kagerer, Sabine
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 6
  givenname: Dieter
  surname: Vaitl
  fullname: Vaitl, Dieter
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
– sequence: 7
  givenname: Rudolf
  surname: Stark
  fullname: Stark, Rudolf
  organization: Bender Institute of Neuroimaging, University of Giessen, Giessen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22040050$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19384886$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URD_gwB9AuSDUQ1rbseP4gkRX_UDdwgXUo-U4k64hsVs72Xb_fb1sugIE6skf87zvjD2zj3acd4DQW4KPCMb0eFH3RxQLSV6gPYKlyDGRxc56X_JcMkF20X6MPzAmhGPyCu2mcMWqqtxDVzPvButuwJlV1oEOLh0y67LF2GuXtekmM941drB-Ci19t4SYDQvIluCGoLssDsHqYexfo5et7iK8mdYD9P3s9NvsIp9_Pf88-zTPTUkoyTnlgldSgKwAEyEIa2QrU0U115Q02giooaaiKoGJmjKdYqRpMIVacK6hOEAfN763Y91DYzZlqNtgex1Wymur_ow4u1A3fqnKSqRPKZPBh8kg-LsR4qB6Gw10nXbgx6gEZ5xjJunzJOOyKCtePE8WDEuZ8ify3e_lb-t-aksC3k-AjkZ3bdDO2LjlKMUMY742Ot5wJvgYA7TK2EGvW5VebTtFsFoPiEoDon4NSFIc_qXYJv8HO7nf2w5W_wfVxcnVkyLfKGwc4GGr0OGnKkUhuLr-cq5O5vNLcV1cKlY8AnE72Pg
CitedBy_id crossref_primary_10_1007_s10508_017_1030_5
crossref_primary_10_1007_s00429_014_0807_8
crossref_primary_10_1002_hbm_22085
crossref_primary_10_1016_j_neuroscience_2011_11_007
crossref_primary_10_1007_s10071_018_1169_z
crossref_primary_10_3758_s13415_018_00666_z
crossref_primary_10_1111_psyp_14288
crossref_primary_10_7202_1040038ar
crossref_primary_10_1016_j_biopsycho_2012_02_001
crossref_primary_10_1093_scan_nsq070
crossref_primary_10_3389_fnhum_2025_1527081
crossref_primary_10_1016_j_ijpsycho_2012_01_004
crossref_primary_10_1016_j_psyneuen_2013_05_015
crossref_primary_10_1038_s41598_024_71575_0
crossref_primary_10_3389_fnbeh_2014_00067
crossref_primary_10_1101_lm_026864_112
crossref_primary_10_1016_j_psyneuen_2009_07_009
crossref_primary_10_1016_j_nlm_2020_107224
crossref_primary_10_1016_j_ijpsycho_2015_06_009
crossref_primary_10_1093_scan_nst137
crossref_primary_10_3389_fnbeh_2015_00069
crossref_primary_10_1007_s10508_012_9915_9
crossref_primary_10_1016_j_biopsych_2015_03_017
crossref_primary_10_3389_fnhum_2023_1228541
crossref_primary_10_1016_j_biopsycho_2012_04_004
crossref_primary_10_1016_j_yhbeh_2012_09_001
crossref_primary_10_1016_j_neubiorev_2021_05_014
crossref_primary_10_1371_journal_pone_0141949
crossref_primary_10_1038_npp_2015_255
crossref_primary_10_1016_j_nlm_2019_107068
crossref_primary_10_1101_lm_051912_120
crossref_primary_10_1038_mp_2010_79
crossref_primary_10_1002_hbm_24915
crossref_primary_10_1016_j_neuroimage_2009_09_040
crossref_primary_10_1093_scan_nsr063
crossref_primary_10_1017_S1461145710001586
crossref_primary_10_3389_fnbeh_2015_00132
crossref_primary_10_1002_hbm_23940
crossref_primary_10_1080_13527266_2018_1497680
crossref_primary_10_1093_scan_nsw157
crossref_primary_10_1016_j_ijpsycho_2015_05_005
crossref_primary_10_3389_fnhum_2014_00323
crossref_primary_10_1016_j_cortex_2016_03_015
crossref_primary_10_1016_j_jsxm_2016_01_013
crossref_primary_10_1016_j_neubiorev_2020_04_019
crossref_primary_10_1111_j_1743_6109_2009_01405_x
crossref_primary_10_1016_j_neuroimage_2021_118269
crossref_primary_10_3758_s13415_021_00909_6
crossref_primary_10_1002_hbm_22688
crossref_primary_10_1016_j_neurobiolaging_2020_02_024
Cites_doi 10.1016/S1364-6613(02)02041-7
10.1037/0097-7403.28.1.3
10.1523/JNEUROSCI.15-10-06846.1995
10.1016/j.pneurobio.2004.09.004
10.1111/j.1469-8986.2006.00469.x
10.1126/science.7973682
10.1038/nature02581
10.1523/JNEUROSCI.0433-03.2004
10.1016/j.neulet.2008.09.057
10.1016/j.psyneuen.2005.03.019
10.1038/sj.npp.1301555
10.1016/j.neuroimage.2007.08.009
10.1016/j.ijpsycho.2005.01.006
10.1016/j.tics.2008.03.006
10.1523/JNEUROSCI.21-16-j0002.2001
10.1016/j.brainres.2004.08.037
10.1016/j.neuroimage.2005.09.011
10.1126/science.7652558
10.1037/h0034372
10.1016/j.neuroimage.2006.05.046
10.1523/JNEUROSCI.21-17-06897.2001
10.1146/annurev.psych.55.090902.141409
10.1016/j.physbeh.2007.05.057
10.1111/j.1460-9568.2006.05195.x
10.1016/S0896-6273(03)00724-4
10.1080/02699930441000265
10.1016/j.biopsych.2006.10.020
10.1523/JNEUROSCI.2265-08.2008
10.1016/S0896-6273(00)80476-6
10.1101/lm.196606
10.1016/0306-4522(93)90378-S
10.1073/pnas.0334049100
10.1146/annurev.neuro.23.1.155
10.1016/j.neuroimage.2006.03.038
10.1037/1528-3542.7.4.755
10.1016/j.neuron.2004.08.042
10.1016/j.neuroimage.2008.11.015
10.1016/j.neubiorev.2005.09.003
10.1016/j.neuroscience.2008.09.049
10.1016/S0006-3223(02)01485-3
10.1016/j.neubiorev.2005.06.001
10.1016/j.ijpsycho.2005.01.007
10.1038/nn1968
10.3758/CABN.6.2.157
10.1016/j.physbeh.2008.04.006
10.1016/S0959-4388(00)00078-7
10.1002/hbm.20274
10.1016/j.biopsych.2005.10.012
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1002/hbm.20791
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts


Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Fear Conditioning and the Ventral Striatum
EISSN 1097-0193
EndPage 3644
ExternalDocumentID PMC6871066
19384886
22040050
10_1002_hbm_20791
HBM20791
ark_67375_WNG_BLLK7W3K_4
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Research Foundation Graduiertenkolleg 885 “NeuroAct”
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c6121-52575897e98e017714d9f9848b5a21dac7ebeb2786e47b24a9841dd02eb755ae3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:58:37 EDT 2025
Thu Sep 04 22:59:46 EDT 2025
Fri Sep 05 08:16:05 EDT 2025
Fri Sep 05 00:03:16 EDT 2025
Wed Feb 19 01:45:01 EST 2025
Thu Apr 10 09:00:52 EDT 2025
Tue Jul 01 04:25:56 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:37:42 EST 2025
Sun Sep 21 06:15:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Nervous system diseases
fear conditioning
Radiodiagnosis
Awareness
Central nervous system
contingency awareness
Basal ganglion
Corpus striatum
Encephalon
Learning
Nucleus accumbens
Fear
Acquisition process
striatum
differential classical conditioning
Conditioning
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6121-52575897e98e017714d9f9848b5a21dac7ebeb2786e47b24a9841dd02eb755ae3
Notes German Research Foundation Graduiertenkolleg 885 "NeuroAct"
ArticleID:HBM20791
ark:/67375/WNG-BLLK7W3K-4
istex:F2C42B7840A06615A49CE0BA1C7C114E4C335DB4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6871066
PMID 19384886
PQID 734099710
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871066
proquest_miscellaneous_754550492
proquest_miscellaneous_745936853
proquest_miscellaneous_734099710
pubmed_primary_19384886
pascalfrancis_primary_22040050
crossref_citationtrail_10_1002_hbm_20791
crossref_primary_10_1002_hbm_20791
wiley_primary_10_1002_hbm_20791_HBM20791
istex_primary_ark_67375_WNG_BLLK7W3K_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Pezze MA,Feldon J ( 2004): Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74: 301-320.
Quirk GJ,Mueller D ( 2008): Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33: 56-72.
Dawson ME,Rissling AJ,Schell AM,Wilcox R ( 2007): Under what conditions can human affective conditioning occur without contingency awareness? Test of the evaluative conditioning paradigm. Emotion 7: 755-766.
Hamm AO,Weike AI ( 2005): The neuropsychology of fear learning and fear regulation: Neurobiology of fear and disgust. Int J Psychphysiol 57: 5-14.
LeDoux JE ( 2000): Emotion circuits in the brain. Ann Rev Neurosci 23: 155-184.
Knight DC,Cheng DT,Smith CN,Stein EA,Helmstetter FJ ( 2004): Neural substrates mediating human delay and trace fear conditioning. J Neurosci 24: 218-228.
Jensen J,McIntosh AR,Crawley AP,Mikulis DJ,Remington G,Kapur S ( 2003): Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40: 1251-1257.
Fenu S,Bassareo V,Di Chiara G ( 2001): A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J Neurosci 21: 6897-6904.
Schiller D,Levy I,Niv Y,LeDoux JE,Phelps EA ( 2008): From fear to safety and back: reversal of fear in the human. J Neurosci 28: 11517-11525.
Iordanova MD,Westbrook RF,Killcross AS ( 2006): Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning. Eur J Neurosci 24: 3265-3270.
Burgdorf J,Panksepp J ( 2006): The neurobiology of positive emotions. Neurosci Biobehav Rev 30: 173-187.
Carter RM,Hofstotter C,Tsuchiya N,Koch C ( 2003): Working memory and fear conditioning. Proc Natl Acad Sci USA 100: 399-1404.
Domjan M ( 2005): Pavlovian conditioning: A functional perspective. Annu Rev Psychol 56: 179-206.
Pecina S ( 2008): Opioid reward 'liking' and 'wanting' in the nucleus accumbens. Physiol Behav 94: 675-680.
Phan KL,Taylor SF,Welsh RC,Decker LR,Noll DC,Nichols TE,Britton JC,Liberzon I ( 2003): Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: A fMRI study. Biol Psychiat 53: 211-215.
Seymour B,O'Doherty JP,Dayan P,Koltzenburg M,Jones AK,Dolan RJ,Friston KJ,Frackowiak RS ( 2004): Temporal difference models describe higher-order learning in humans. Nature 429: 664-667.
Whittle S,Allen NB,Lubman DI,Yücel M ( 2006): The neurobiological basis of temperament: Towards a better understanding of psyhopthology. Neurosci Biobeh Rev 30: 511-525.
Fox PT,Lancaster JL ( 1994): Neuroscience on the net. Science 266: 994-996.
Carter RM,O'Doherty JP,Seymour B,Koch C,Dolan RJ ( 2006): Contingency awareness in human aversive conditioning involves the middle frontal gyrus. NeuroImage 29: 1007-1012.
Tabbert K,Stark R,Kirsch P,Vaitl D ( 2005): Hemodynamic responses of the amygdala, the orbitofrontal cortex and the visual cortex during a fear conditioning paradigm. Int J Psychophysiol 57: 15-23.
Dawson ME,Reardon P ( 1973): Construct validity of recall and recognition postconditioning measures of awareness. J Exp Psychol 98: 308-315.
Knight DC,Waters NS,Bandettini PA ( 2009): Neural substrates of explicit and implicit fear memory. NeuroImage 45: 208-214.
Martinez RCR,Oliveira AR,Macedo CE,Molina VA,Brandão ML ( 2008): Involvement of dopaminergic mechanisms in the nucleus accumbens core, shell subregions in the expression of fear conditioning. Neurosci Lett 446: 112-116.
De Houwer J,Baeyens F,Field AP ( 2005): Associative learning of likes and dislikes: some current controversies and possible ways forward. Cognit Emot 19: 161-174.
Öhman A ( 2005): The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinoly 30: 953-958.
Cooper JC,Knutson B ( 2007): Valence and salience contribute to nucleus accumbens activation. NeuroImage 39: 538-547.
Knight DC,Nguyen HT,Bandettini PA ( 2006): The role of awareness in delay and trace fear conditioning in humans. Cogn Affect Behav Neurosci 6: 157-162.
McNally GP,Westbrook RF ( 2006): Predicting danger: The nature, consequences, and neural mechanisms of predictive fear learning. Learn Mem 13: 245-253.
Clark RE,Manns JR,Squire LR ( 2002): Classical conditioning, awareness, and brain systems. Trends Cognit Sci 6: 524-531.
Tabbert K,Stark R,Kirsch P,Vaitl D ( 2006): Dissociation of neural responses and skin conductance reactions during fear conditioning with and without awareness of stimulus contingencies. NeuroImage 32: 761-770.
Schwienbacher I,Fendt M,Richardson R,Schnitzler H ( 2004): Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Res 1027: 87-93.
Klucken T,Kagerer S,Schweckendiek J,Tabbert K,Vaitl D,Stark R ( 2009): Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm. Neuroscience 158: 721-731.
Sotres-Bayon F,Cain CK,LeDoux JE ( 2006): Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex. Biol Psychiat 60: 329-336.
Büchel C,Morris J,Dolan RJ,Friston KJ ( 1998): Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron 20: 947-957.
Büchel C,Dolan RJ ( 2000): Classical fear conditioning in functional neuroimaging. Curr Opin Neurobiol 10: 219-223.
Lovibond PF,Shanks DR ( 2002): The role of awareness in pavlovian conditioning: empirical evidence and theoretical implications. J Exp Psychol Anim Behav Processes 28: 3-26.
Jensen J,Smith AJ,Willeit M,Crawley AP,Mikulis DJ,Vitcu I,Kapur S ( 2007): Separate brain regions code for salience vs. valence during reward prediction in humans. Hum Brain Mapp 28: 294-302.
Phelps EA,Delgado MR,Nearing KI,LeDoux JE ( 2004): Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43: 897-905.
Knutson B,Adams CM,Fong GW,Hommer D ( 2001): Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21: RC159.
Menon M,Jensen J,Vitcu I,Graff-Guerrero A,Crawley A,Smith MA,Kapur S ( 2007): Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: Effects of dopaminergic modulation. Biol Psychiat 62: 765-772.
Olsson A,Phelps EA ( 2007): Social learning of fear. Nat Neurosci 10: 1095-1102.
Niv Y,Schoenbaum G ( 2008): Dialogues on prediction errors. Trends Cogn Sci 12: 265-272.
Bechara A,Tranel D,Damasio H,Adolphs R,Rockland C,Damasio AR ( 1995): Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269: 1115-1118.
Öhman A,Carlsson K,Lundqvist D,Ingvar M ( 2007): On the unconscious subcortical origin of human fear. Physiol Behav 92: 180-185.
LaBar KS,LeDoux JE,Spencer DD,Phelps EA ( 1995): Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci 15: 6846-6855.
Weike AI,Schupp HT,Hamm AO ( 2007): Fear acquisition requires awareness in trace but not delay conditioning. Psychophysiology 44: 170-180.
Young AM,Joseph MH,Gray JA ( 1993): Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54: 5-9.
Pleyers G,Corneille O,Luminet O,Yzerbyt V ( 2007): Aware and (dis)liking: Item-based analyses reveal that valence acquisition via evaluative conditioning emerges only when there is contingency awareness. J Exp Psych 33: 130-144.
Stark R,Wolf OT,Tabbert K,Kagerer S,Zimmermann M,Kirsch P,Schienle A,Vaitl D ( 2006): Influence of the stress hormone cortisol on fear conditioning in humans: Evidence for sex differences in the response of the prefrontal cortex. NeuroImage 32: 1290-1298.
2007; 39
2009; 45
2004; 43
2006; 30
1973; 98
2006; 13
1995; 15
2000; 23
2006; 32
2002; 6
2004; 24
2008; 12
2006; 6
2007; 92
2008; 446
2008; 33
2002
2008; 94
2007; 10
2007; 33
2004; 1027
1998; 20
2009; 158
2003; 53
2001; 21
2004; 429
1994; 266
2007; 28
2002; 28
2006; 60
2004; 74
2005; 19
2006; 24
2000; 10
1993; 54
2008; 28
2005; 30
2006; 29
1995; 269
2007; 7
2007; 62
2003; 40
2007; 44
2003; 100
2005; 56
2005; 57
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Pleyers G (e_1_2_6_40_1) 2007; 33
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Büchel C,Morris J,Dolan RJ,Friston KJ ( 1998): Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron 20: 947-957.
– reference: Tabbert K,Stark R,Kirsch P,Vaitl D ( 2005): Hemodynamic responses of the amygdala, the orbitofrontal cortex and the visual cortex during a fear conditioning paradigm. Int J Psychophysiol 57: 15-23.
– reference: Cooper JC,Knutson B ( 2007): Valence and salience contribute to nucleus accumbens activation. NeuroImage 39: 538-547.
– reference: Fox PT,Lancaster JL ( 1994): Neuroscience on the net. Science 266: 994-996.
– reference: Schiller D,Levy I,Niv Y,LeDoux JE,Phelps EA ( 2008): From fear to safety and back: reversal of fear in the human. J Neurosci 28: 11517-11525.
– reference: Carter RM,Hofstotter C,Tsuchiya N,Koch C ( 2003): Working memory and fear conditioning. Proc Natl Acad Sci USA 100: 399-1404.
– reference: Pecina S ( 2008): Opioid reward 'liking' and 'wanting' in the nucleus accumbens. Physiol Behav 94: 675-680.
– reference: Burgdorf J,Panksepp J ( 2006): The neurobiology of positive emotions. Neurosci Biobehav Rev 30: 173-187.
– reference: Whittle S,Allen NB,Lubman DI,Yücel M ( 2006): The neurobiological basis of temperament: Towards a better understanding of psyhopthology. Neurosci Biobeh Rev 30: 511-525.
– reference: Dawson ME,Rissling AJ,Schell AM,Wilcox R ( 2007): Under what conditions can human affective conditioning occur without contingency awareness? Test of the evaluative conditioning paradigm. Emotion 7: 755-766.
– reference: Lovibond PF,Shanks DR ( 2002): The role of awareness in pavlovian conditioning: empirical evidence and theoretical implications. J Exp Psychol Anim Behav Processes 28: 3-26.
– reference: Iordanova MD,Westbrook RF,Killcross AS ( 2006): Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning. Eur J Neurosci 24: 3265-3270.
– reference: Young AM,Joseph MH,Gray JA ( 1993): Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54: 5-9.
– reference: Knight DC,Waters NS,Bandettini PA ( 2009): Neural substrates of explicit and implicit fear memory. NeuroImage 45: 208-214.
– reference: Clark RE,Manns JR,Squire LR ( 2002): Classical conditioning, awareness, and brain systems. Trends Cognit Sci 6: 524-531.
– reference: Schwienbacher I,Fendt M,Richardson R,Schnitzler H ( 2004): Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Res 1027: 87-93.
– reference: Niv Y,Schoenbaum G ( 2008): Dialogues on prediction errors. Trends Cogn Sci 12: 265-272.
– reference: Seymour B,O'Doherty JP,Dayan P,Koltzenburg M,Jones AK,Dolan RJ,Friston KJ,Frackowiak RS ( 2004): Temporal difference models describe higher-order learning in humans. Nature 429: 664-667.
– reference: Öhman A,Carlsson K,Lundqvist D,Ingvar M ( 2007): On the unconscious subcortical origin of human fear. Physiol Behav 92: 180-185.
– reference: Quirk GJ,Mueller D ( 2008): Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33: 56-72.
– reference: Olsson A,Phelps EA ( 2007): Social learning of fear. Nat Neurosci 10: 1095-1102.
– reference: Bechara A,Tranel D,Damasio H,Adolphs R,Rockland C,Damasio AR ( 1995): Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269: 1115-1118.
– reference: Pezze MA,Feldon J ( 2004): Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74: 301-320.
– reference: Stark R,Wolf OT,Tabbert K,Kagerer S,Zimmermann M,Kirsch P,Schienle A,Vaitl D ( 2006): Influence of the stress hormone cortisol on fear conditioning in humans: Evidence for sex differences in the response of the prefrontal cortex. NeuroImage 32: 1290-1298.
– reference: Tabbert K,Stark R,Kirsch P,Vaitl D ( 2006): Dissociation of neural responses and skin conductance reactions during fear conditioning with and without awareness of stimulus contingencies. NeuroImage 32: 761-770.
– reference: Menon M,Jensen J,Vitcu I,Graff-Guerrero A,Crawley A,Smith MA,Kapur S ( 2007): Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: Effects of dopaminergic modulation. Biol Psychiat 62: 765-772.
– reference: Fenu S,Bassareo V,Di Chiara G ( 2001): A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J Neurosci 21: 6897-6904.
– reference: Jensen J,Smith AJ,Willeit M,Crawley AP,Mikulis DJ,Vitcu I,Kapur S ( 2007): Separate brain regions code for salience vs. valence during reward prediction in humans. Hum Brain Mapp 28: 294-302.
– reference: LaBar KS,LeDoux JE,Spencer DD,Phelps EA ( 1995): Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci 15: 6846-6855.
– reference: Phelps EA,Delgado MR,Nearing KI,LeDoux JE ( 2004): Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43: 897-905.
– reference: Dawson ME,Reardon P ( 1973): Construct validity of recall and recognition postconditioning measures of awareness. J Exp Psychol 98: 308-315.
– reference: Weike AI,Schupp HT,Hamm AO ( 2007): Fear acquisition requires awareness in trace but not delay conditioning. Psychophysiology 44: 170-180.
– reference: Domjan M ( 2005): Pavlovian conditioning: A functional perspective. Annu Rev Psychol 56: 179-206.
– reference: Jensen J,McIntosh AR,Crawley AP,Mikulis DJ,Remington G,Kapur S ( 2003): Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40: 1251-1257.
– reference: Öhman A ( 2005): The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinoly 30: 953-958.
– reference: LeDoux JE ( 2000): Emotion circuits in the brain. Ann Rev Neurosci 23: 155-184.
– reference: Carter RM,O'Doherty JP,Seymour B,Koch C,Dolan RJ ( 2006): Contingency awareness in human aversive conditioning involves the middle frontal gyrus. NeuroImage 29: 1007-1012.
– reference: Hamm AO,Weike AI ( 2005): The neuropsychology of fear learning and fear regulation: Neurobiology of fear and disgust. Int J Psychphysiol 57: 5-14.
– reference: Knight DC,Cheng DT,Smith CN,Stein EA,Helmstetter FJ ( 2004): Neural substrates mediating human delay and trace fear conditioning. J Neurosci 24: 218-228.
– reference: Büchel C,Dolan RJ ( 2000): Classical fear conditioning in functional neuroimaging. Curr Opin Neurobiol 10: 219-223.
– reference: Knutson B,Adams CM,Fong GW,Hommer D ( 2001): Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21: RC159.
– reference: Phan KL,Taylor SF,Welsh RC,Decker LR,Noll DC,Nichols TE,Britton JC,Liberzon I ( 2003): Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: A fMRI study. Biol Psychiat 53: 211-215.
– reference: Pleyers G,Corneille O,Luminet O,Yzerbyt V ( 2007): Aware and (dis)liking: Item-based analyses reveal that valence acquisition via evaluative conditioning emerges only when there is contingency awareness. J Exp Psych 33: 130-144.
– reference: Knight DC,Nguyen HT,Bandettini PA ( 2006): The role of awareness in delay and trace fear conditioning in humans. Cogn Affect Behav Neurosci 6: 157-162.
– reference: Sotres-Bayon F,Cain CK,LeDoux JE ( 2006): Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex. Biol Psychiat 60: 329-336.
– reference: Klucken T,Kagerer S,Schweckendiek J,Tabbert K,Vaitl D,Stark R ( 2009): Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm. Neuroscience 158: 721-731.
– reference: Martinez RCR,Oliveira AR,Macedo CE,Molina VA,Brandão ML ( 2008): Involvement of dopaminergic mechanisms in the nucleus accumbens core, shell subregions in the expression of fear conditioning. Neurosci Lett 446: 112-116.
– reference: De Houwer J,Baeyens F,Field AP ( 2005): Associative learning of likes and dislikes: some current controversies and possible ways forward. Cognit Emot 19: 161-174.
– reference: McNally GP,Westbrook RF ( 2006): Predicting danger: The nature, consequences, and neural mechanisms of predictive fear learning. Learn Mem 13: 245-253.
– volume: 44
  start-page: 170
  year: 2007
  end-page: 180
  article-title: Fear acquisition requires awareness in trace but not delay conditioning
  publication-title: Psychophysiology
– volume: 100
  start-page: 399
  year: 2003
  end-page: 1404
  article-title: Working memory and fear conditioning
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 1007
  year: 2006
  end-page: 1012
  article-title: Contingency awareness in human aversive conditioning involves the middle frontal gyrus
  publication-title: NeuroImage
– volume: 56
  start-page: 179
  year: 2005
  end-page: 206
  article-title: Pavlovian conditioning: A functional perspective
  publication-title: Annu Rev Psychol
– volume: 23
  start-page: 155
  year: 2000
  end-page: 184
  article-title: Emotion circuits in the brain
  publication-title: Ann Rev Neurosci
– volume: 6
  start-page: 524
  year: 2002
  end-page: 531
  article-title: Classical conditioning, awareness, and brain systems
  publication-title: Trends Cognit Sci
– volume: 57
  start-page: 5
  year: 2005
  end-page: 14
  article-title: The neuropsychology of fear learning and fear regulation: Neurobiology of fear and disgust
  publication-title: Int J Psychphysiol
– volume: 57
  start-page: 15
  year: 2005
  end-page: 23
  article-title: Hemodynamic responses of the amygdala, the orbitofrontal cortex and the visual cortex during a fear conditioning paradigm
  publication-title: Int J Psychophysiol
– volume: 21
  start-page: RC159
  year: 2001
  article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens
  publication-title: J Neurosci
– volume: 43
  start-page: 897
  year: 2004
  end-page: 905
  article-title: Extinction learning in humans: Role of the amygdala and vmPFC
  publication-title: Neuron
– volume: 24
  start-page: 218
  year: 2004
  end-page: 228
  article-title: Neural substrates mediating human delay and trace fear conditioning
  publication-title: J Neurosci
– volume: 269
  start-page: 1115
  year: 1995
  end-page: 1118
  article-title: Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans
  publication-title: Science
– volume: 39
  start-page: 538
  year: 2007
  end-page: 547
  article-title: Valence and salience contribute to nucleus accumbens activation
  publication-title: NeuroImage
– volume: 53
  start-page: 211
  year: 2003
  end-page: 215
  article-title: Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: A fMRI study
  publication-title: Biol Psychiat
– volume: 40
  start-page: 1251
  year: 2003
  end-page: 1257
  article-title: Direct activation of the ventral striatum in anticipation of aversive stimuli
  publication-title: Neuron
– volume: 13
  start-page: 245
  year: 2006
  end-page: 253
  article-title: Predicting danger: The nature, consequences, and neural mechanisms of predictive fear learning
  publication-title: Learn Mem
– volume: 92
  start-page: 180
  year: 2007
  end-page: 185
  article-title: On the unconscious subcortical origin of human fear
  publication-title: Physiol Behav
– volume: 446
  start-page: 112
  year: 2008
  end-page: 116
  article-title: Involvement of dopaminergic mechanisms in the nucleus accumbens core, shell subregions in the expression of fear conditioning
  publication-title: Neurosci Lett
– volume: 33
  start-page: 130
  year: 2007
  end-page: 144
  article-title: Aware and (dis)liking: Item‐based analyses reveal that valence acquisition via evaluative conditioning emerges only when there is contingency awareness
  publication-title: J Exp Psych
– volume: 429
  start-page: 664
  year: 2004
  end-page: 667
  article-title: Temporal difference models describe higher‐order learning in humans
  publication-title: Nature
– volume: 12
  start-page: 265
  year: 2008
  end-page: 272
  article-title: Dialogues on prediction errors
  publication-title: Trends Cogn Sci
– volume: 10
  start-page: 1095
  year: 2007
  end-page: 1102
  article-title: Social learning of fear
  publication-title: Nat Neurosci
– volume: 98
  start-page: 308
  year: 1973
  end-page: 315
  article-title: Construct validity of recall and recognition postconditioning measures of awareness
  publication-title: J Exp Psychol
– volume: 30
  start-page: 953
  year: 2005
  end-page: 958
  article-title: The role of the amygdala in human fear: automatic detection of threat
  publication-title: Psychoneuroendocrinoly
– volume: 33
  start-page: 56
  year: 2008
  end-page: 72
  article-title: Neural mechanisms of extinction learning and retrieval
  publication-title: Neuropsychopharmacology
– volume: 32
  start-page: 1290
  year: 2006
  end-page: 1298
  article-title: Influence of the stress hormone cortisol on fear conditioning in humans: Evidence for sex differences in the response of the prefrontal cortex
  publication-title: NeuroImage
– volume: 6
  start-page: 157
  year: 2006
  end-page: 162
  article-title: The role of awareness in delay and trace fear conditioning in humans
  publication-title: Cogn Affect Behav Neurosci
– volume: 20
  start-page: 947
  year: 1998
  end-page: 957
  article-title: Brain systems mediating aversive conditioning: An event‐related fMRI study
  publication-title: Neuron
– volume: 15
  start-page: 6846
  year: 1995
  end-page: 6855
  article-title: Impaired fear conditioning following unilateral temporal lobectomy in humans
  publication-title: J Neurosci
– volume: 28
  start-page: 11517
  year: 2008
  end-page: 11525
  article-title: From fear to safety and back: reversal of fear in the human
  publication-title: J Neurosci
– volume: 62
  start-page: 765
  year: 2007
  end-page: 772
  article-title: Temporal difference modeling of the blood‐oxygen level dependent response during aversive conditioning in humans: Effects of dopaminergic modulation
  publication-title: Biol Psychiat
– volume: 54
  start-page: 5
  year: 1993
  end-page: 9
  article-title: Latent inhibition of conditioned dopamine release in rat nucleus accumbens
  publication-title: Neuroscience
– volume: 28
  start-page: 3
  year: 2002
  end-page: 26
  article-title: The role of awareness in pavlovian conditioning: empirical evidence and theoretical implications
  publication-title: J Exp Psychol Anim Behav Processes
– volume: 19
  start-page: 161
  year: 2005
  end-page: 174
  article-title: Associative learning of likes and dislikes: some current controversies and possible ways forward
  publication-title: Cognit Emot
– volume: 7
  start-page: 755
  year: 2007
  end-page: 766
  article-title: Under what conditions can human affective conditioning occur without contingency awareness? Test of the evaluative conditioning paradigm
  publication-title: Emotion
– volume: 21
  start-page: 6897
  year: 2001
  end-page: 6904
  article-title: A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning
  publication-title: J Neurosci
– volume: 158
  start-page: 721
  year: 2009
  end-page: 731
  article-title: Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture‐picture conditioning paradigm
  publication-title: Neuroscience
– volume: 74
  start-page: 301
  year: 2004
  end-page: 320
  article-title: Mesolimbic dopaminergic pathways in fear conditioning
  publication-title: Prog Neurobiol
– volume: 24
  start-page: 3265
  year: 2006
  end-page: 3270
  article-title: Dopamine activity in the nucleus accumbens modulates blocking in fear conditioning
  publication-title: Eur J Neurosci
– volume: 266
  start-page: 994
  year: 1994
  end-page: 996
  article-title: Neuroscience on the net
  publication-title: Science
– volume: 10
  start-page: 219
  year: 2000
  end-page: 223
  article-title: Classical fear conditioning in functional neuroimaging
  publication-title: Curr Opin Neurobiol
– volume: 94
  start-page: 675
  year: 2008
  end-page: 680
  article-title: Opioid reward ‘liking’ and ‘wanting’ in the nucleus accumbens
  publication-title: Physiol Behav
– volume: 45
  start-page: 208
  year: 2009
  end-page: 214
  article-title: Neural substrates of explicit and implicit fear memory
  publication-title: NeuroImage
– volume: 30
  start-page: 173
  year: 2006
  end-page: 187
  article-title: The neurobiology of positive emotions
  publication-title: Neurosci Biobehav Rev
– volume: 60
  start-page: 329
  year: 2006
  end-page: 336
  article-title: Brain mechanisms of fear extinction: Historical perspectives on the contribution of prefrontal cortex
  publication-title: Biol Psychiat
– volume: 30
  start-page: 511
  year: 2006
  end-page: 525
  article-title: The neurobiological basis of temperament: Towards a better understanding of psyhopthology
  publication-title: Neurosci Biobeh Rev
– year: 2002
– volume: 1027
  start-page: 87
  year: 2004
  end-page: 93
  article-title: Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear‐potentiated startle in rats
  publication-title: Brain Res
– volume: 32
  start-page: 761
  year: 2006
  end-page: 770
  article-title: Dissociation of neural responses and skin conductance reactions during fear conditioning with and without awareness of stimulus contingencies
  publication-title: NeuroImage
– volume: 28
  start-page: 294
  year: 2007
  end-page: 302
  article-title: Separate brain regions code for salience vs. valence during reward prediction in humans
  publication-title: Hum Brain Mapp
– ident: e_1_2_6_8_1
  doi: 10.1016/S1364-6613(02)02041-7
– ident: e_1_2_6_27_1
  doi: 10.1037/0097-7403.28.1.3
– ident: e_1_2_6_25_1
  doi: 10.1523/JNEUROSCI.15-10-06846.1995
– ident: e_1_2_6_37_1
  doi: 10.1016/j.pneurobio.2004.09.004
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1469-8986.2006.00469.x
– ident: e_1_2_6_31_1
– ident: e_1_2_6_15_1
  doi: 10.1126/science.7973682
– ident: e_1_2_6_44_1
  doi: 10.1038/nature02581
– ident: e_1_2_6_21_1
  doi: 10.1523/JNEUROSCI.0433-03.2004
– ident: e_1_2_6_28_1
  doi: 10.1016/j.neulet.2008.09.057
– ident: e_1_2_6_33_1
  doi: 10.1016/j.psyneuen.2005.03.019
– ident: e_1_2_6_41_1
  doi: 10.1038/sj.npp.1301555
– ident: e_1_2_6_9_1
  doi: 10.1016/j.neuroimage.2007.08.009
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ijpsycho.2005.01.006
– ident: e_1_2_6_32_1
  doi: 10.1016/j.tics.2008.03.006
– ident: e_1_2_6_24_1
  doi: 10.1523/JNEUROSCI.21-16-j0002.2001
– ident: e_1_2_6_42_1
  doi: 10.1016/j.brainres.2004.08.037
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2005.09.011
– volume: 33
  start-page: 130
  year: 2007
  ident: e_1_2_6_40_1
  article-title: Aware and (dis)liking: Item‐based analyses reveal that valence acquisition via evaluative conditioning emerges only when there is contingency awareness
  publication-title: J Exp Psych
– ident: e_1_2_6_2_1
  doi: 10.1126/science.7652558
– ident: e_1_2_6_10_1
  doi: 10.1037/h0034372
– ident: e_1_2_6_45_1
  doi: 10.1016/j.neuroimage.2006.05.046
– ident: e_1_2_6_14_1
  doi: 10.1523/JNEUROSCI.21-17-06897.2001
– ident: e_1_2_6_13_1
  doi: 10.1146/annurev.psych.55.090902.141409
– ident: e_1_2_6_34_1
  doi: 10.1016/j.physbeh.2007.05.057
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1460-9568.2006.05195.x
– ident: e_1_2_6_18_1
  doi: 10.1016/S0896-6273(03)00724-4
– ident: e_1_2_6_12_1
  doi: 10.1080/02699930441000265
– ident: e_1_2_6_30_1
  doi: 10.1016/j.biopsych.2006.10.020
– ident: e_1_2_6_43_1
  doi: 10.1523/JNEUROSCI.2265-08.2008
– ident: e_1_2_6_4_1
  doi: 10.1016/S0896-6273(00)80476-6
– ident: e_1_2_6_29_1
  doi: 10.1101/lm.196606
– ident: e_1_2_6_51_1
  doi: 10.1016/0306-4522(93)90378-S
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.0334049100
– ident: e_1_2_6_26_1
  doi: 10.1146/annurev.neuro.23.1.155
– ident: e_1_2_6_48_1
  doi: 10.1016/j.neuroimage.2006.03.038
– ident: e_1_2_6_11_1
  doi: 10.1037/1528-3542.7.4.755
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neuron.2004.08.042
– ident: e_1_2_6_23_1
  doi: 10.1016/j.neuroimage.2008.11.015
– ident: e_1_2_6_50_1
  doi: 10.1016/j.neubiorev.2005.09.003
– ident: e_1_2_6_20_1
  doi: 10.1016/j.neuroscience.2008.09.049
– ident: e_1_2_6_38_1
  doi: 10.1016/S0006-3223(02)01485-3
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neubiorev.2005.06.001
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ijpsycho.2005.01.007
– ident: e_1_2_6_35_1
  doi: 10.1038/nn1968
– ident: e_1_2_6_22_1
  doi: 10.3758/CABN.6.2.157
– ident: e_1_2_6_36_1
  doi: 10.1016/j.physbeh.2008.04.006
– ident: e_1_2_6_3_1
  doi: 10.1016/S0959-4388(00)00078-7
– ident: e_1_2_6_19_1
  doi: 10.1002/hbm.20274
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biopsych.2005.10.012
SSID ssj0011501
Score 2.1927555
Snippet The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3636
SubjectTerms Adult
Awareness - physiology
Basal Ganglia - blood supply
Basal Ganglia - drug effects
Basal Ganglia - physiology
Biological and medical sciences
Brain Mapping
Conditioning, Classical - drug effects
Conditioning, Classical - physiology
contingency awareness
Databases, Factual - statistics & numerical data
differential classical conditioning
Fear - drug effects
fear conditioning
Female
Fundamental and applied biological sciences. Psychology
Human
Humans
Hydrocortisone - pharmacology
Investigative techniques, diagnostic techniques (general aspects)
Learning
Learning. Memory
Magnetic Resonance Imaging - methods
Male
Medical sciences
Models, Statistical
Nervous system
nucleus accumbens
Oxygen - blood
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
striatum
Young Adult
Title Contingency learning in human fear conditioning involves the ventral striatum
URI https://api.istex.fr/ark:/67375/WNG-BLLK7W3K-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20791
https://www.ncbi.nlm.nih.gov/pubmed/19384886
https://www.proquest.com/docview/734099710
https://www.proquest.com/docview/745936853
https://www.proquest.com/docview/754550492
https://pubmed.ncbi.nlm.nih.gov/PMC6871066
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9VAEJ8QTIwXP0ClKGRjDPFSaLfbbjecQMUX4XEwEjiYbPar8gIUw3uPgH89s9sPfIrEeGu608NOZ3Z_szvzG4C3lWWOFtZhbKKSmHGlY5GpMnYZs5W2aZLokG2xXwwO2Oej_GgONrtamIYfoj9w854R1mvv4EqPN25JQ4-1LyTnoXI9zQrPm__hS08d5YFOCLZwi40FrsAdq1BCN_ovZ_aiB16tVz43Uo1RPVXT1-Iu4Pln_uSvuDZsTDtP4Fs3pSYf5WR9OtHr5udvbI__Oeen8LgFrGSrsbBnMOfqBVjcqjFYP7smaySkkIaz-QV4OGxv6hdh6GmvQuGWuSZta4rvZFST0BSQVPiGYChuR-2BMA7hQnnpxgQRKblspkxCU5HJ9Ow5HOx8_Pp-ELetG2LjKcliz7Gal4I7UTr0eZ4yKypRslLniqZWGY7GoykvC8e4pkzhWGptQp3mea5c9gLm6_PaLQExiDC1S0zlHMplhcaIsNTGoJUJm3AXwbvuJ0rT8pr79hqnsmFkphK1JoPWInjTi_5oyDzuEloLltBLqIsTn_3Gc3m4_0lu7-3t8sNsV7IIVmdMpf-AUr8y5kkEpLMdiU7rb2JU7c6nY8kz5iuW0_tEmO-1iGDqHpHcl6QzQSN42Rjk7axEhsouiwj4jKn2Ap5VfHakHh0HdvECQ2jEoajWYIl_V5QcbA_Dw_K_i76CR-E6LhRzvob5ycXUrSCqm-jV4L43OxFKSQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQRceLRQwqNYCFVc0iaOEycSlxZRFvZxQK3aC7Ls2KGr0hR1dyvKr2fGyaYslApxi-LJwZMZ-xt75huAV5UVjmfWYWyio1BIbcIi0XnoEmErY-MoMj7bYpT1DsTHo_RoCd7Ma2EafojuwI08w6_X5OB0IL19xRp6bKiSXFLp-oq_nyNI9KkjjyKo48Mt3GTDAtfgOa9QxLe7Txd2oxVS7HfKjtQTVFDVdLa4Dnr-mUH5K7L1W9PePfg8n1STkXKyNZuarfLHb3yP_zvr-3C3xaxspzGyB7Dk6lVY26kxXj-9ZJvMZ5H64_lVuDVsL-vXYEjMV752q7xkbXeKL2xcM98XkFX4hmE0bsftmTAO4Vp54SYMQSm7aObMfF-R6ez0IRzsvdt_2wvb7g1hSaxkIdGspnkhXZE7dHsZC1tURS5yk2oeW11KtB_DZZ45IQ0XGsdiayPujExT7ZJHsFyf1e4xsBJBpnFRWTmHcklmMCjMTVmioRU2ki6A1_O_qMqW2pw6bHxVDSkzV6g15bUWwMtO9FvD53Gd0KY3hU5Cn59QApxM1eHovdodDPryMOkrEcDGgq10H3BOi2MaBcDmxqPQb-kyRtfubDZRMhFUtBzfJCKo3SLiqRtEUqpKFwUPYL2xyKtZFQkqO88CkAu22gkQsfjiSD0-9gTjGUbRCEVRrd4U_64o1dsd-ocn_y76Am739ocDNfgw6j-FO_52ztd2PoPl6fnMPUeQNzUb3pd_ArOaTmc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrVRx4dECDY9iIVRxSZs4ThyLUwssC_sQQlTtAcmyY4euStOqu1tRfj1j51EWSoW4RfHk4MmM_Y098w3Ai9IwSzNjMTZRUci40qFIVB7ahJlSmziKtM-2GGf9ffbhMD1cgldtLUzND9EduDnP8Ou1c_AzU-5ckYYeaVdIzl3l-grLcJt0iOhTxx3lkI6PtnCPDQUuwS2tUER3uk8XNqMVp9fvLjlSTVE_Zd3Y4jrk-WcC5a_A1u9MvTvwpZ1TnZByvD2f6e3ix290j_856btwu0GsZLc2sXuwZKs1WN-tMFo_uSRbxOeQ-sP5NVgdNVf16zByvFe-cqu4JE1viq9kUhHfFZCU-IZgLG4mzYkwDuFKeWGnBCEpuainTHxXkdn85D7s995-ft0Pm94NYeE4yUJHsprmgluRW3R6HjMjSpGzXKeKxkYVHK1HU55nlnFNmcKx2JiIWs3TVNnkASxXp5XdAFIgxNQ2KkprUS7JNIaEuS4KNDNhIm4DeNn-RFk0xOauv8Y3WVMyU4lak15rATzvRM9qNo_rhLa8JXQS6vzYpb_xVB6M38m94XDAD5KBZAFsLphK9wGlbmlMowBIazsSvdZdxajKns6nkifMlSzHN4kw12wR0dQNIqmrSWeCBvCwNsirWYkElZ1nAfAFU-0EHK344kg1OfL04hnG0AhEUa3eEv-uKNnfG_mHR_8u-gxWP77pyeH78eAx3PJXc76w8wksz87n9ikivJne9J78E5T4TRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contingency+learning+in+human+fear+conditioning+involves+the+ventral+striatum&rft.jtitle=Human+brain+mapping&rft.au=Klucken%2C+Tim&rft.au=Tabbert%2C+Katharina&rft.au=Schweckendiek%2C+Jan&rft.au=Merz%2C+Christian+Josef&rft.date=2009-11-01&rft.issn=1065-9471&rft.volume=30&rft.issue=11&rft.spage=3636&rft.epage=3644&rft_id=info:doi/10.1002%2Fhbm.20791&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon