VMseg: Using spatial variance to automatically segment retinal non-perfusion on OCT-angiography
To develop and test VMseg, a new image processing algorithm performing automatic segmentation of retinal non-perfusion in widefield OCT-Angiography images, in order to estimate the non-perfusion index in diabetic patients. We included diabetic patients with severe non-proliferative or proliferative...
Saved in:
| Published in | PloS one Vol. 19; no. 8; p. e0306794 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0306794 |
Cover
| Summary: | To develop and test VMseg, a new image processing algorithm performing automatic segmentation of retinal non-perfusion in widefield OCT-Angiography images, in order to estimate the non-perfusion index in diabetic patients.
We included diabetic patients with severe non-proliferative or proliferative diabetic retinopathy. We acquired images using the PlexElite 9000 OCT-A device with a photomontage of 5 images of size 12 x 12 mm. We then developed VMseg, a Python algorithm for non-perfusion detection, which binarizes a variance map calculated through convolution and morphological operations. We used 70% of our data set (development set) to fine-tune the algorithm parameters (convolution and morphological parameters, binarization thresholds) and evaluated the algorithm performance on the remaining 30% (test set). The obtained automatic segmentations were compared to a ground truth corresponding to manual segmentation from a retina expert and the inference processing time was estimated.
We included 51 eyes of 30 patients (27 severe non-proliferative, 24 proliferative diabetic retinopathy). Using the optimal parameters found on the development set to tune the algorithm, the mean dice for the test set was 0.683 (sd = 0.175). We found a higher dice coefficient for images with a higher area of retinal non-perfusion (rs = 0.722, p < 10-4). There was a strong correlation (rs = 0.877, p < 10-4) between VMseg estimated non-perfusion indexes and indexes estimated using the ground truth segmentation. The Bland-Altman plot revealed that 3 eyes (5.9%) were significantly under-segmented by VMseg.
We developed VMseg, an automatic algorithm for retinal non-perfusion segmentation on 12 x 12 mm OCT-A widefield photomontages. This simple algorithm was fast at inference time, segmented images in full-resolution and for the OCT-A format, was accurate enough for automatic estimation of retinal non-perfusion index in diabetic patients with diabetic retinopathy. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0306794 |