Ensemble machine learning approach for screening of coronary heart disease based on echocardiography and risk factors

Background Extensive clinical evidence suggests that a preventive screening of coronary heart disease (CHD) at an earlier stage can greatly reduce the mortality rate. We use 64 two-dimensional speckle tracking echocardiography (2D-STE) features and seven clinical features to predict whether one has...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 21; no. 1; pp. 187 - 13
Main Authors Zhang, Jingyi, Zhu, Huolan, Chen, Yongkai, Yang, Chenguang, Cheng, Huimin, Li, Yi, Zhong, Wenxuan, Wang, Fang
Format Journal Article
LanguageEnglish
Published London BioMed Central 11.06.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-021-01535-5

Cover

More Information
Summary:Background Extensive clinical evidence suggests that a preventive screening of coronary heart disease (CHD) at an earlier stage can greatly reduce the mortality rate. We use 64 two-dimensional speckle tracking echocardiography (2D-STE) features and seven clinical features to predict whether one has CHD. Methods We develop a machine learning approach that integrates a number of popular classification methods together by model stacking, and generalize the traditional stacking method to a two-step stacking method to improve the diagnostic performance. Results By borrowing strengths from multiple classification models through the proposed method, we improve the CHD classification accuracy from around 70–87.7% on the testing set. The sensitivity of the proposed method is 0.903 and the specificity is 0.843, with an AUC of 0.904, which is significantly higher than those of the individual classification models. Conclusion Our work lays a foundation for the deployment of speckle tracking echocardiography-based screening tools for coronary heart disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-021-01535-5