基于仿射投影一独立分量分析的盲源分离

仿射投影算法(APA)重复利用数据,可提高算法的收敛速度。针对现有盲源分离(BSS)收敛慢问题,以BSS的独立分量分析(ICA)为基础,结合APA思想,设计出BSS的APA—ME、APA—MMI、APA-EASI新算法。在这些新算法中,输出向量数据被重复利用,向量式数据转变成矩阵式数据,从而加快了BSS的收敛速度。仿真结果表明,APA—ICA类的BSS算法是有效的。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 6; pp. 1721 - 1725
Main Author 李雄杰 周东华
Format Journal Article
LanguageChinese
Published 浙江工商职业技术学院电子信息工程系,浙江宁波315012 2017
清华大学自动化系,北京100084%清华大学自动化系,北京,100084
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.06.027

Cover

More Information
Summary:仿射投影算法(APA)重复利用数据,可提高算法的收敛速度。针对现有盲源分离(BSS)收敛慢问题,以BSS的独立分量分析(ICA)为基础,结合APA思想,设计出BSS的APA—ME、APA—MMI、APA-EASI新算法。在这些新算法中,输出向量数据被重复利用,向量式数据转变成矩阵式数据,从而加快了BSS的收敛速度。仿真结果表明,APA—ICA类的BSS算法是有效的。
Bibliography:blind source separation; affine projection algorithm; independent component analysis; maximum entropy; minimum mutual information
51-1196/TP
Li Xiongjie1,2 , Zhou Donghua2 ( 1. Dept. of Electronic & Information Engineering, Zhefiang Business Technology Institute, Ningbo Zhefiang 315012, China ; 2. Dept. of Automation, Tsinghua University, Beijing 100084, China)
Using data in a repeated mode can improve the convergence speed of the affine projection algorithm (APA). Ai- ming at the problem of slow convergence in the existing blind source separation (BSS) , based on the independent component analysis (ICA) for BSS, this paper designed new APA-ME, APA-MMI and APA-EASI algorithms for BSS by using the idea of APA. In these new algorithms, output vector data was utilized in a repeated fashion, and the vector data was thus converted into matrix data. The convergence rate of BSS was accelerated. Simulation results show that the effectiveness and applicability of APA-ICA class BSS algorithm.
ISSN:1001-3695
DOI:10.3969/j.issn.1001-3695.2017.06.027