ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells

Management of infection with hepatitis B virus (HBV) remains a global health problem. Persistence of stable covalently closed circular DNA (cccDNA) during HBV replication is responsible for modest curative efficacy of currently licensed drugs. Novel gene editing technologies, such as those based on...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 7401 - 11
Main Authors Scott, Tristan, Moyo, Buhle, Nicholson, Samantha, Maepa, Mohube Betty, Watashi, Koichi, Ely, Abdullah, Weinberg, Marc S., Arbuthnot, Patrick
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.08.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-017-07642-6

Cover

More Information
Summary:Management of infection with hepatitis B virus (HBV) remains a global health problem. Persistence of stable covalently closed circular DNA (cccDNA) during HBV replication is responsible for modest curative efficacy of currently licensed drugs. Novel gene editing technologies, such as those based on CRISPR/Cas9, provide the means for permanently disabling cccDNA. However, efficient delivery of antiviral sequences to infected hepatocytes is challenging. A limiting factor is the large size of sequences encoding Cas9 from Streptococcus pyogenes , and resultant incompatibility with the popular single stranded adeno-associated viral vectors (ssAAVs). We thus explored the utility of ssAAVs for delivery of engineered CRISPR/Cas9 of Staphylococcus aureus (Sa), which is encoded by shorter DNA sequences. Short guide RNAs (sgRNAs) were designed with cognates in the S open reading frame of HBV and incorporated into AAVs that also encoded SaCas9. Intended targeted mutation of HBV DNA was observed after transduction of cells with the all-in-one vectors. Efficacy against HBV-infected hNTCP-HepG2 cells indicated that inactivation of cccDNA was successful. Analysis of likely off-target mutagenesis revealed no unintended sequence changes. Use of ssAAVs to deliver all components required to disable cccDNA by SaCas9 is novel and the technology has curative potential for HBV infection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-07642-6