基于均值聚类分析和多层核心集凝聚算法相融合的网络入侵检测
为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚分析和多层核心集凝聚算法相融合的网络入侵检的网络入侵检测模型。利用K—means算法对多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现了顶层核心集的快速准确定位,简化了算法的计算复杂性。然后,将KM.MulCA算法应用到入侵检测模型,最后采用KDDCup99数据集进行仿真实验。结果表明,本模型可以获得理想的网络入侵检测率和误检率。...
Saved in:
Published in | 计算机应用研究 Vol. 33; no. 2; pp. 518 - 520 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
北京大学 信息科学技术学院,北京100871
2016
六盘水师范学院计算机科学与信息技术系,贵州六盘水553004 北京大学 网络与软件安全保障教育部重点实验室,北京100871 北京大学 网络与软件安全保障教育部重点实验室,北京100871%北京大学 信息科学技术学院,北京100871 广东海洋大学信息学院,广东湛江524088 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2016.02.046 |
Cover
Summary: | 为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚分析和多层核心集凝聚算法相融合的网络入侵检的网络入侵检测模型。利用K—means算法对多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现了顶层核心集的快速准确定位,简化了算法的计算复杂性。然后,将KM.MulCA算法应用到入侵检测模型,最后采用KDDCup99数据集进行仿真实验。结果表明,本模型可以获得理想的网络入侵检测率和误检率。 |
---|---|
Bibliography: | 51-1196/TP In order to improve the detection rate of intrusion detection model and reduce the false negative rate and error de- tection rate, this paper proposed a novel network intrusion detection model based on K-means and multilayer condensation algo- rithm. Firstly, it used K-means algorithm to obtain the core algorithm of MulCA set selection process, and set substitute for the top core raw coarsening process,realized the fast and accurate positioning of the core set, and might be appropriate to reduce the aggregation layer, simplified the computation complexity of the algorithm. And then, it applied the proposed algorithm to the intrusion detection model. The experimental results show that the proposed algorithm can obtain Rood intrusion results. Shi Yun, Chen Zhong, Sun Bing(1. Dept. of Computer Science & Information Technology, Liupanshui Normal University, Liupanshui Guizhou 553004, China; 2. a. School of Electronics Engineering & Computer Science, b. Network & Software Security for Ministry of Educatio |
ISSN: | 1001-3695 |
DOI: | 10.3969/j.issn.1001-3695.2016.02.046 |