应用精英反向学习的引力搜索算法

引力搜索算法是近年提出的一种颇具潜力的全局优化算法,已经成功应用到了各种工程实践中,然而它在求解复杂工程优化问题时容易出现早熟收敛问题。为了在一定程度上避免早熟收敛现象,提出一种应用精英反向学习策略的引力搜索算法(EOGSA)。在演化进程中,对当前种群中的每个个体分别执行精英反向学习策略,生成一个精英反向种群,并将生成的精英反向种群与当前种群同时进行竞争,选择出下一代种群。在一系列经典函数优化测试问题上的对比实验结果表明,EOGSA算法能够提高传统引力搜索算法的性能,在一定程度上避免早熟收敛的缺点。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 12; pp. 3638 - 3641
Main Author 井福荣 郭肇禄 罗会兰 李康顺
Format Journal Article
LanguageChinese
Published 华南农业大学信息学院,广州510642 2015
江西理工大学信息工程学院,江西赣州,341000%江西理工大学理学院,江西赣州,341000%江西理工大学信息工程学院,江西赣州341000
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.12.025

Cover

More Information
Summary:引力搜索算法是近年提出的一种颇具潜力的全局优化算法,已经成功应用到了各种工程实践中,然而它在求解复杂工程优化问题时容易出现早熟收敛问题。为了在一定程度上避免早熟收敛现象,提出一种应用精英反向学习策略的引力搜索算法(EOGSA)。在演化进程中,对当前种群中的每个个体分别执行精英反向学习策略,生成一个精英反向种群,并将生成的精英反向种群与当前种群同时进行竞争,选择出下一代种群。在一系列经典函数优化测试问题上的对比实验结果表明,EOGSA算法能够提高传统引力搜索算法的性能,在一定程度上避免早熟收敛的缺点。
Bibliography:51-1196/TP
Jing Furong , Guo Zhaolu, Luo Huilan, Li Kangshun ( 1. a. School of Information Engineering, b. School of Science, Jiangxi University of Science & Technology, Ganzhou Jiangxi 341000, China 2. College of Information, South China Agricultural University, Guangzhou 510642, China)
global optimization; evolutionary algorithm; elite opposition-based learning; gravitational search algorithm
Gravitational search algorithm (GSA) is a newly developed global optimization algorithm,which has been successfully applied in many practical applications. However,it tends to suffer from premature convergence when solving complex practical optimization problems. In order to avoid the premature convergence to some degree, this paper proposed an improved gravitational search algorithm with elite opposition-based learning ( EOGSA). In the evolutionary process, each individual of EOGSA in the current population was undergone by the elite opposition-based learning strategy to create an elite opposition-based population. Moreo
ISSN:1001-3695
DOI:10.3969/j.issn.1001-3695.2015.12.025