基于稀疏PCA的多阶次分数阶傅里叶变换域特征人脸识别

鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 33; no. 4; pp. 1253 - 1257
Main Author 王亚星 齐林 郭新 陈恩庆
Format Journal Article
LanguageChinese
Published 郑州大学 信息工程学院,郑州,450001 2016
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2016.04.065

Cover

Abstract 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。
AbstractList 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。
TP391.41; 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。
Abstract_FL Face recognition systems suffers from illumination,expression and occlusion and so on.This paper presented a novel discrete fractional Fourier features method based on sparse principal component analysis (SPCA)for face recognition.It used the fractional Fourier transform (FRFT)to image processing with its robust to illumination and expression.Specially,it handled the magnitude of FRFT,whose energy displayed constringent characteristic,by SPCA to further divide into the main energy of magnitude part (MMP)and the remaining energy of magnitude part (RMP),which combined into the hybrid magnitude part (HMP)to fuse complementary features.Then for fractional Fourier features with individual transform order,the hybrid fractio-nal Fourier features (HFFF)formed and consisted of three fractional Fourier features:HMP,real part (RP)and imaginary part (IP).Finally,it fused the HFFF generated using three fractional Fourier features with different transform orders by means of the weighted summation rule-the decision level fusion-to derive the MOFF for face recognition.In addition,it introduced the greedy search to select the transform order of the FRFT.Experimental results of MOFF on the ORL (96.5%)and AR (97.6%)databases verify the effectiveness of the results by using these new modifications.
Author 王亚星 齐林 郭新 陈恩庆
AuthorAffiliation 郑州大学信息工程学院,郑州450001
AuthorAffiliation_xml – name: 郑州大学 信息工程学院,郑州,450001
Author_FL Guo Xin
Wang Yaxing
Qi Lin
Chen Enqing
Author_FL_xml – sequence: 1
  fullname: Wang Yaxing
– sequence: 2
  fullname: Qi Lin
– sequence: 3
  fullname: Guo Xin
– sequence: 4
  fullname: Chen Enqing
Author_xml – sequence: 1
  fullname: 王亚星 齐林 郭新 陈恩庆
BookMark eNo9kE9LAkEYh-dgkFpfIjp02W12_rlzFKkMhDp4l9ndWXOpsVwi9lZhZlB5KsSLFB2CgjpJ7aFP47j6LVoxOr0vLw-_l-eXAxnVVBKAdQuamDO-GZiNMFSmBaFlYMapiaDFTEhMyGgGZP_vyyAXhgGEBFkcZkFZD-NxfJ-8niePvf1SMRm09ctg1h9N3p90tzN5-Ex3fXk1u77VvZHu9Sd3z3o4TG6-9c_FOI6n7a_pR0d331bAki8OQ7n6N_Ogur1VLZWNyt7ObqlYMVwGqcGcAmbMka4jhUM4IVwwm3oFD2HBOJLEcXzPpwXXFp5EFsHYljYVFEPMIRI-zoONReyZUL5Q9VrQPG2p9GEtCIMoioK5NiSpdIquLVD3oKnqJ40UPm41jkQrqjFmIzqvBP8C1xx1Zg
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2016.04.065
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Fusion of complementary discrete fractional Fourier features extracted through sparse PCA in generalized frequency domains for face recognition
DocumentTitle_FL Fusion of complementary discrete fractional Fourier features extracted through sparse PCA in generalized frequency domains for face recognition
EndPage 1257
ExternalDocumentID jsjyyyj201604065
668251001
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61210005,61331021)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c605-6b7366becbeab49449a685d7d23a692e4bbfdf57c8ade214338e85a5303902af3
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:20:36 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 贪婪算法
特征融合
feature fusion
稀疏主成分分析法(SPCA)
face recognition
greedy search
人脸识别
分数阶傅里叶变换(FRFT)
fractional Fourier transforms
sparse principal component analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605-6b7366becbeab49449a685d7d23a692e4bbfdf57c8ade214338e85a5303902af3
Notes 51-1196/TP
Face recognition systems suffers from illumination,expression and occlusion and so on. This paper presented a novel discrete fractional Fourier features method based on sparse principal component analysis( SPCA) for face recognition. It used the fractional Fourier transform( FRFT) to image processing with its robust to illumination and expression. Specially,it handled the magnitude of FRFT,whose energy displayed constringent characteristic,by SPCA to further divide into the main energy of magnitude part( MMP) and the remaining energy of magnitude part( RMP),which combined into the hybrid magnitude part( HMP) to fuse complementary features. Then for fractional Fourier features with individual transform order,the hybrid fractional Fourier features( HFFF) formed and consisted of three fractional Fourier features: HMP,real part( RP) and imaginary part( IP). Finally,it fused the HFFF generated using three fractional Fourier features with different transform orders by means of the weighted summation rule-
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201604065
chongqing_primary_668251001
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationYear 2016
Publisher 郑州大学 信息工程学院,郑州,450001
Publisher_xml – name: 郑州大学 信息工程学院,郑州,450001
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0474224
Snippet 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应...
TP391.41; 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1253
SubjectTerms 人脸识别
分数阶傅里叶变换(FRFT)
特征融合
稀疏主成分分析法(SPCA)
贪婪算法
Title 基于稀疏PCA的多阶次分数阶傅里叶变换域特征人脸识别
URI http://lib.cqvip.com/qk/93231X/201604/668251001.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201604065
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdOgHiBe_xVqVFTqnsjWbzExmjpPdhCooHir0tmx2k5YetmrbQ3tSqbWC2pNSilAUD4KCnoruwV_TdNt_4XuT2W0oRVohDC_z3sx7My-Z9xJm3iNkTKUVAUteWmZp7JSZC4XiKik3fRE7lQSMSoxnh-8_EJOP2L1pPj0w-LGwa2lpMZ5orhx7ruR_tAp1oFc8JXsKzfY7hQqAQb9QgoahPJGOacipimigaciwlCENfaolbl8AQAkqo_GHVW1uAM2wgWYIh4oqSQNBQ0F1leoKoiS0NDWK08Ap0ADKpZJjjfSprJqaqIeKkAxayRrVrpUJLmAqFQ0U1gQhuKxWShRXojCBREBHhqnhroOis2ywoZHNR0D5Rraq6YFjqZgZGsMxI41jazTw7f9yNIIA_8Dyx9ELFFlFhyTQoEaVYzDIqYiRHtU1gxEwLUWMUig1Dr2CPHOhbNBt-yslP-NpHnvblzJzHfjIKNeH9g0A0yfGjZCRGXTebWSpNe8pN-hTWxlg1t3qMb27VYaZKCoFy4N72zyRZxztmaY8Roh9BVnBzoBb6hV8Frj1j7OHnhLK2ENkMdFngTsahYnwm-fpOBJxfG5hbnl5eQ6JYIkXfJAMuz74cUNkWAe1IDp0t8E7LYZfdDGy0eHnLeYmEAV7ggkTwUD27QmveD432Rdyz4kBMo8eYuU8Q8bsIO78awgYFmV2vj3zBJw9c_aunTbaMwU3ceoCOWe_70o6f1kvkoGV2UvkfC93Ssma0svkbrbd2e2863591v2wUYJ3tLu1mn3ZOtjc2fv-KVtf23v_E-DsxcuDV2-yjZ1sY3Pv7edse7v7-nf25_lup7O_-mv_x1q2_u0KmYrCqepk2aY1KTeFw8si9j0hYOmMk0bMFGOqISRv-S3XawjlJiyO01bK_aZstGCtZJ4nE8kbHHxN5biN1LtKhtrz7eQaKcGnDiypPE7ACLPU4bLJE6_p-QyUJTzXGSGj_YmpP86j19SFwNPqMI8j5Ladqrpd0xbqR1V__QQ0o-Qswvl_yRtkaPHpUnITPPXF-JZ9YP4CW3-0DQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A8%80%E7%96%8F+PCA%E7%9A%84%E5%A4%9A%E9%98%B6%E6%AC%A1%E5%88%86%E6%95%B0%E9%98%B6%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2%E5%9F%9F%E7%89%B9%E5%BE%81%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E4%BA%9A%E6%98%9F&rft.au=%E9%BD%90%E6%9E%97&rft.au=%E9%83%AD%E6%96%B0&rft.au=%E9%99%88%E6%81%A9%E5%BA%86&rft.date=2016&rft.pub=%E9%83%91%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%83%91%E5%B7%9E%2C450001&rft.issn=1001-3695&rft.volume=33&rft.issue=4&rft.spage=1253&rft.epage=1257&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2016.04.065&rft.externalDocID=jsjyyyj201604065
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg