基于稀疏PCA的多阶次分数阶傅里叶变换域特征人脸识别

鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 33; no. 4; pp. 1253 - 1257
Main Author 王亚星 齐林 郭新 陈恩庆
Format Journal Article
LanguageChinese
Published 郑州大学 信息工程学院,郑州,450001 2016
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2016.04.065

Cover

More Information
Summary:鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。
Bibliography:51-1196/TP
Face recognition systems suffers from illumination,expression and occlusion and so on. This paper presented a novel discrete fractional Fourier features method based on sparse principal component analysis( SPCA) for face recognition. It used the fractional Fourier transform( FRFT) to image processing with its robust to illumination and expression. Specially,it handled the magnitude of FRFT,whose energy displayed constringent characteristic,by SPCA to further divide into the main energy of magnitude part( MMP) and the remaining energy of magnitude part( RMP),which combined into the hybrid magnitude part( HMP) to fuse complementary features. Then for fractional Fourier features with individual transform order,the hybrid fractional Fourier features( HFFF) formed and consisted of three fractional Fourier features: HMP,real part( RP) and imaginary part( IP). Finally,it fused the HFFF generated using three fractional Fourier features with different transform orders by means of the weighted summation rule-
ISSN:1001-3695
DOI:10.3969/j.issn.1001-3695.2016.04.065