基于熵权与混合代理模型的永磁驱动器的优化设计

针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 20; no. 6; pp. 102 - 108
Main Author 李召 王大志 时统宇 郑迪
Format Journal Article
LanguageChinese
Published 东北大学信息科学与工程学院,辽宁沈阳,110004 2016
Subjects
Online AccessGet full text
ISSN1007-449X
DOI10.15938/j.emc.2016.06.013

Cover

Abstract 针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。
AbstractList TH133; 针对永磁驱动器( PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。
针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。
Abstract_FL Permanent magnet drive ( PMD) design problems were studied and an optimization design ap-proach based on hybrid surrogate model and improved entropy-weight was put forward .Firstly by combi-ning the response surface method ( RSM ) , Kriging method and support vector machine regression ( SVR) ,a hybrid surrogate model of optimizing parameters and response variables was built ,in which the optimal weighting method based on cross validation error is used; Secondly the improved entropy-weight was introduced to transform the multi-indexes of PMD into a single composite one ,and the mathematical model was built ,which was solved by adaptive weight particle swarm optimization particle swarm optimiza-tion( AWPSO);Finally the parameters results were analyzed with finite element method and experimental validation.The results show that the proposed method is superior to other methods ,and the structural pa-rameters are reasonable and effective .And the expected results are derived .
Author 李召 王大志 时统宇 郑迪
AuthorAffiliation 东北大学信息科学与工程学院,辽宁沈阳110004
AuthorAffiliation_xml – name: 东北大学信息科学与工程学院,辽宁沈阳,110004
Author_FL WANG Da-zhi
ZHENG Di
SHI Tong-yu
LI Zhao
Author_FL_xml – sequence: 1
  fullname: LI Zhao
– sequence: 2
  fullname: WANG Da-zhi
– sequence: 3
  fullname: SHI Tong-yu
– sequence: 4
  fullname: ZHENG Di
Author_xml – sequence: 1
  fullname: 李召 王大志 时统宇 郑迪
BookMark eNotj7tKA0EUhqeIYIx5AUsrm13nsjOTKTV4g4BNCrswm92NWc2u7iIaO4kEUQmpRAWVkCY2QQtJiOLT7CW-hSMRDvxw_o9z-BZAxvM9G4AlBHVEBSmsurrdqOoYIqZDNYhkQBZByDXDEHvzIB-GdRNCRhkhAmfBevwyiSadtP2RPLWicScZjeLuVfTZT7vtZNCLn2_Sx8vkbZz2L35e3-PrQfwwUJvo6z6-vZsOv6fD3iKYc-RhaOf_MwfKmxvl4rZW2t3aKa6VtCqDRGMcCyaEjbCBDCoxY4aFBMbckQ43IMaImAVkmZxKx-aqxQqW0LQsYWJuF0gOrMzOnkrPkV6t4vongaceViy3eXB-Zv45Q6aMFbo8Q6v7vlc7riv4KKg3ZNCsMCawoJBS8gt1JnBT
ClassificationCodes TH133
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.15938/j.emc.2016.06.013
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Optimization design for permanent magnet drive based on entropy-weight and hybrid surrogate model
DocumentTitle_FL Optimization design for permanent magnet drive based on entropy-weight and hybrid surrogate model
EndPage 108
ExternalDocumentID djykzxb201606013
669295055
GrantInformation_xml – fundername: 国家自然科学基金; 中国高校基本科研业务费
  funderid: (61433004); (N150403005,L1504011)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c603-6729699e124145a2664d19227faf7402213b81db75afe7664299ea0bdd9b27e83
ISSN 1007-449X
IngestDate Thu May 29 04:05:40 EDT 2025
Wed Feb 14 10:18:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 熵权法
混合代理模型
自适应权重粒子群算法
最优加权法
永磁驱动器
adaptive weight particle swarm optimization particle swarm optimization
permanent magnet drive
optimal weighting method
hybrid surrogate model
entropy-weight method
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603-6729699e124145a2664d19227faf7402213b81db75afe7664299ea0bdd9b27e83
Notes LI Zhao, WANG Da-zhi, SHI Tong-yu, ZHENG Di (School of Information Science & Engineering, Northeastern University, Shenyang 110004, China)
permanent magnet drive; hybrid surrogate model; entropy-weight method ; optimal weighting method ; adaptive weight particle swarm optimization particle swarm optimization
Permanent magnet drive (PMD) design problems were studied and an optimization design approach based on hybrid surrogate model and improved entropy-weight was put forward. Firstly by combining the response surface method (RSM), Kriging method and support vector machine regression (SVR) , a hybrid surrogate model of optimizing parameters and response variables was built, in which the optimal weighting method based on cross validation error is used; Secondly the improved entropy-weight was introduced to transform the multi-indexes of PMD into a single composite one, and the mathematical model was built, which was solved by adaptive weight particle swarm optimization particle swarm optimization (AWPSO) ; Finall
PageCount 7
ParticipantIDs wanfang_journals_djykzxb201606013
chongqing_primary_669295055
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电机与控制学报
PublicationTitleAlternate Electric Machines and Control
PublicationYear 2016
Publisher 东北大学信息科学与工程学院,辽宁沈阳,110004
Publisher_xml – name: 东北大学信息科学与工程学院,辽宁沈阳,110004
SSID ssib006563392
ssib025702231
ssib000271328
ssib051374584
ssib036435450
ssib017479520
ssib001129775
ssib023166998
Score 2.090948
Snippet 针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量...
TH133; 针对永磁驱动器( PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 102
SubjectTerms 最优加权法
永磁驱动器
混合代理模型
熵权法
自适应权重粒子群算法
Title 基于熵权与混合代理模型的永磁驱动器的优化设计
URI http://lib.cqvip.com/qk/90977A/201606/669295055.html
https://d.wanfangdata.com.cn/periodical/djykzxb201606013
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1007-449X
  databaseCode: ADMLS
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib025702231
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcMjj4kUUFWNUItjHjfPonu4-9mRnCWK8GCG3ZWd2JiHixkcCmpsoQVRCTqKCSsglXoIeJCERv2Yf8S-sqpnZTBIPMbA0TXdVdT1mp6u6p6st6yZeR9OMRVSByTmpwAuPV6JYRxXpRHECE7BIKJnO1F1_8j6_PSNmBgb3Sl8tLS1G4_HyP8-VnMaq0AZ2xVOy_2HZPlFogDrYF0qwMJQnsjELBdM1FhgWcixVyELJlM8CwUKf6SpTHnUp6oJ2iT_EsplS1BUw4yEWtvgIYxQzDsGETAXUBZQ5odtICloARQGMZkazgICVQUTE0lTpY8EQE0xTl4IKDAH0QxaEecU4Zf-YEHnB_0QhWsE_lIb4B-YDHyumygyxjQyI4vEppA8JtsYOEkySgjLBAJnn5IIa0_IQsiT6EvUDGkZYQCqBaFStdlAIQDamvHqSHeukJz3nHiTJ5ZeHxs2550TDITEcZmqkYknkyzAqFwhMaATBqEKQDEaT9l0W1lDpMBxyB7quFgLQEIFLttdolcDrA2NWv-yO5nySwuVlzukK4v4s5tqlf2t5SnJst-TdOJRF4_jEKTTlyZ8fTx5iYk_Hp6y22THhIwnJm_PPHyw_ixAIk_l4g9awK8HNG7KGTXXqzr3yprZTTgWFrr0seasQSnjewaY-xMZSi4PoBSIP3y-tBuB9i25p09oDZxr8_z68cDyJu_70fUOuofyYHEp365hsmE5lbqE1-xicRDqz10obrdmSezl9zjqbx4VjJvuTn7cGlucuWEHn6257d7W38rP7-WV7Z7W7vd1Ze93e2-itrXQ31ztf3vY-vep-3-ltvPjz7UfnzWbn4ya0tH996Lx7v7_1e39r_aI1XQunJyYr-aUnldi3vYoPwS4InYDb7XDRAPeZNyEIc2XaSCUH-R0vghAzkqKRJqB1dCeThh01mzpyZaK8S9ZQa6GVXLbGeOryVMSpaHiaaxFHiXYTTyd2JGIvjtSINdoXv_4oy21TB427GqIiMWLdyBVSz994T-tHLX_lBDCj1hmsZ6uWV62hxSdLyTXw4xej6_nz8hc7X7iF
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%86%B5%E6%9D%83%E4%B8%8E%E6%B7%B7%E5%90%88%E4%BB%A3%E7%90%86%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%B0%B8%E7%A3%81%E9%A9%B1%E5%8A%A8%E5%99%A8%E7%9A%84%E4%BC%98%E5%8C%96%E8%AE%BE%E8%AE%A1&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%8F%AC&rft.au=%E7%8E%8B%E5%A4%A7%E5%BF%97&rft.au=%E6%97%B6%E7%BB%9F%E5%AE%87&rft.au=%E9%83%91%E8%BF%AA&rft.date=2016&rft.pub=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%EF%BC%8C%E8%BE%BD%E5%AE%81%E6%B2%88%E9%98%B3%EF%BC%8C110004&rft.issn=1007-449X&rft.volume=20&rft.issue=6&rft.spage=102&rft.epage=108&rft_id=info:doi/10.15938%2Fj.emc.2016.06.013&rft.externalDocID=djykzxb201606013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg