基于熵权与混合代理模型的永磁驱动器的优化设计
针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。...
Saved in:
Published in | 电机与控制学报 Vol. 20; no. 6; pp. 102 - 108 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
东北大学信息科学与工程学院,辽宁沈阳,110004
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-449X |
DOI | 10.15938/j.emc.2016.06.013 |
Cover
Summary: | 针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。 |
---|---|
Bibliography: | LI Zhao, WANG Da-zhi, SHI Tong-yu, ZHENG Di (School of Information Science & Engineering, Northeastern University, Shenyang 110004, China) permanent magnet drive; hybrid surrogate model; entropy-weight method ; optimal weighting method ; adaptive weight particle swarm optimization particle swarm optimization Permanent magnet drive (PMD) design problems were studied and an optimization design approach based on hybrid surrogate model and improved entropy-weight was put forward. Firstly by combining the response surface method (RSM), Kriging method and support vector machine regression (SVR) , a hybrid surrogate model of optimizing parameters and response variables was built, in which the optimal weighting method based on cross validation error is used; Secondly the improved entropy-weight was introduced to transform the multi-indexes of PMD into a single composite one, and the mathematical model was built, which was solved by adaptive weight particle swarm optimization particle swarm optimization (AWPSO) ; Finall |
ISSN: | 1007-449X |
DOI: | 10.15938/j.emc.2016.06.013 |