基于熵权与混合代理模型的永磁驱动器的优化设计

针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 20; no. 6; pp. 102 - 108
Main Author 李召 王大志 时统宇 郑迪
Format Journal Article
LanguageChinese
Published 东北大学信息科学与工程学院,辽宁沈阳,110004 2016
Subjects
Online AccessGet full text
ISSN1007-449X
DOI10.15938/j.emc.2016.06.013

Cover

More Information
Summary:针对永磁驱动器(PMD)的结构设计问题,提出一种基于改进熵权法结合混合代理模型的优化设计方法。首先利用基于交叉验证误差的最优加权法,将响应曲面法、克里金法以及支持向量机回归结合起来,构建PMD的参数变量与响应变量之间的混合代理模型;然后引入改进的熵权法,将PMD的多指标转化为单一综合指标,并建立其优化的数学模型,通过自适应权重粒子群优化算法求解;最后对结果进行有限元仿真分析和实验室仿真平台验证。研究结果表明,所提出的优化设计方法优于其它方法,得到的PMD结构参数合理有效,较好的实现了PMD的多目标优化设计。
Bibliography:LI Zhao, WANG Da-zhi, SHI Tong-yu, ZHENG Di (School of Information Science & Engineering, Northeastern University, Shenyang 110004, China)
permanent magnet drive; hybrid surrogate model; entropy-weight method ; optimal weighting method ; adaptive weight particle swarm optimization particle swarm optimization
Permanent magnet drive (PMD) design problems were studied and an optimization design approach based on hybrid surrogate model and improved entropy-weight was put forward. Firstly by combining the response surface method (RSM), Kriging method and support vector machine regression (SVR) , a hybrid surrogate model of optimizing parameters and response variables was built, in which the optimal weighting method based on cross validation error is used; Secondly the improved entropy-weight was introduced to transform the multi-indexes of PMD into a single composite one, and the mathematical model was built, which was solved by adaptive weight particle swarm optimization particle swarm optimization (AWPSO) ; Finall
ISSN:1007-449X
DOI:10.15938/j.emc.2016.06.013