Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information

Several real-time short-term prediction methods, based on time-series modeling of past continuous glucose monitoring (CGM) sensor data have been proposed with the aim of allowing the patient, on the basis of predicted glucose concentration, to anticipate therapeutic decisions and improve therapy of...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 113; no. 1; pp. 144 - 152
Main Authors Zecchin, C., Facchinetti, A., Sparacino, G., Cobelli, C.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.01.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2013.09.016

Cover

More Information
Summary:Several real-time short-term prediction methods, based on time-series modeling of past continuous glucose monitoring (CGM) sensor data have been proposed with the aim of allowing the patient, on the basis of predicted glucose concentration, to anticipate therapeutic decisions and improve therapy of type 1 diabetes. In this field, neural network (NN) approaches could improve prediction performance handling in their inputs additional information. In this contribution we propose a jump NN prediction algorithm (horizon 30min) that exploits not only past CGM data but also ingested carbohydrates information. The NN is tuned on data of 10 type 1 diabetics and then assessed on 10 different subjects. Results show that predictions of glucose concentration are accurate and comparable to those obtained by a recently proposed NN approach (Zecchin et al. (2012) [26]) having higher structural and algorithmical complexity and requiring the patient to announce the meals. This strengthen the potential practical usefulness of the new jump NN approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-2607
1872-7565
1872-7565
DOI:10.1016/j.cmpb.2013.09.016