用于遥感图像建筑物目标分类的层次匹配核
TP751; 提出了一种利用图像特征空间信息的核函数——层次对数极坐标匹配核,用于遥感图像建筑物目标的分类。对图像进行特征提取,并将特征映射到已聚类好的“码本”中,量化为有限个类别。将图像由粗到细划分为多个层次的对数极坐标系下的“子区域(单元格)”。比对落入同一层次、同一“子区域(单元格)”的每类特征的直方图交集,建立加权的多尺度直方图,将多个特征多尺度直方图合并,得到最终的核函数,并利用“一对多”的支持向量机(support vector machine,SVM)完成建筑物的分类。对标准数据库Caltech-256和自建遥感图像数据集进行实验,结果证明了该核函数的有效性。...
Saved in:
| Published in | 计算机科学与探索 Vol. 5; no. 7; pp. 588 - 594 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
国防科学技术大学信息系统与管理学院系统工程系,长沙,410073
2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-9418 |
| DOI | 10.3778/j.issn.1673-9418.2011.07.002 |
Cover
| Summary: | TP751; 提出了一种利用图像特征空间信息的核函数——层次对数极坐标匹配核,用于遥感图像建筑物目标的分类。对图像进行特征提取,并将特征映射到已聚类好的“码本”中,量化为有限个类别。将图像由粗到细划分为多个层次的对数极坐标系下的“子区域(单元格)”。比对落入同一层次、同一“子区域(单元格)”的每类特征的直方图交集,建立加权的多尺度直方图,将多个特征多尺度直方图合并,得到最终的核函数,并利用“一对多”的支持向量机(support vector machine,SVM)完成建筑物的分类。对标准数据库Caltech-256和自建遥感图像数据集进行实验,结果证明了该核函数的有效性。 |
|---|---|
| ISSN: | 1673-9418 |
| DOI: | 10.3778/j.issn.1673-9418.2011.07.002 |