基于人工鱼群粒子滤波的信号源定位

针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入到粒子滤波中,通过觅食行为和聚群行为驱动粒子向最优位置移动,改善粒子的分布。结合移动监测车对信号源定位的需要,建立了信号源波达角定位(AOA)的数学模型,在Matlab环境下对人工鱼群粒子滤波算法的信号源定位进行了仿真。实验结果表明,在保证实时性的前提下,该方法定位结果的最大误差为0.101%,定位精度远大于粒子滤波定位方法的估计精度,是一种有效、可行的定位方法。...

Full description

Saved in:
Bibliographic Details
Published in电讯技术 Vol. 56; no. 12; pp. 1370 - 1375
Main Author 杜太行 赵黎媛 江春冬 于晗
Format Journal Article
LanguageChinese
Published 河北省控制工程研究中心,天津300130%河北工业大学 控制科学与工程学院,天津,300130 2016
河北工业大学 控制科学与工程学院,天津300130
Subjects
Online AccessGet full text
ISSN1001-893X
DOI10.3969/j.issn.1001-893x.2016.12.012

Cover

Abstract 针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入到粒子滤波中,通过觅食行为和聚群行为驱动粒子向最优位置移动,改善粒子的分布。结合移动监测车对信号源定位的需要,建立了信号源波达角定位(AOA)的数学模型,在Matlab环境下对人工鱼群粒子滤波算法的信号源定位进行了仿真。实验结果表明,在保证实时性的前提下,该方法定位结果的最大误差为0.101%,定位精度远大于粒子滤波定位方法的估计精度,是一种有效、可行的定位方法。
AbstractList 针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入到粒子滤波中,通过觅食行为和聚群行为驱动粒子向最优位置移动,改善粒子的分布。结合移动监测车对信号源定位的需要,建立了信号源波达角定位(AOA)的数学模型,在Matlab环境下对人工鱼群粒子滤波算法的信号源定位进行了仿真。实验结果表明,在保证实时性的前提下,该方法定位结果的最大误差为0.101%,定位精度远大于粒子滤波定位方法的估计精度,是一种有效、可行的定位方法。
TN97; 针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入到粒子滤波中,通过觅食行为和聚群行为驱动粒子向最优位置移动,改善粒子的分布。结合移动监测车对信号源定位的需要,建立了信号源波达角定位( AOA)的数学模型,在Matlab环境下对人工鱼群粒子滤波算法的信号源定位进行了仿真。实验结果表明,在保证实时性的前提下,该方法定位结果的最大误差为0.101%,定位精度远大于粒子滤波定位方法的估计精度,是一种有效、可行的定位方法。
Abstract_FL A signal source location method based on artificial fish school particle filter algorithm is proposed to solve the problem of the low precision of particle filter. It employs the optimization idea of artificial fish school algorithm and uses the alternation of behaviors of preying and swarming,which makes particles move towards the optimum area,so particle distribution is improved. Then the mathematical model of angle of ar-rival( AOA) location is established according to the need of mobile monitoring vehicles for target location. Finally,the simulation analysis of signal source location based on artificial fish school particle filter algo-rithm is conducted under Matlab environment. Experimental results show that the maximum error of loca-tion results of the proposed method is 0. 101% on the premise of real-time need,and the location accuracy of the proposed method is better than that of particle filter. It is an effective and feasible location method.
Author 杜太行 赵黎媛 江春冬 于晗
AuthorAffiliation 河北工业大学控制科学与工程学院,天津300130 河北省控制工程研究中心,天津300130
AuthorAffiliation_xml – name: 河北工业大学 控制科学与工程学院,天津300130; 河北省控制工程研究中心,天津300130%河北工业大学 控制科学与工程学院,天津,300130
Author_FL ZHAO Liyuan
DU Taihang
YU Han
JIANG Chundong
Author_FL_xml – sequence: 1
  fullname: DU Taihang
– sequence: 2
  fullname: ZHAO Liyuan
– sequence: 3
  fullname: JIANG Chundong
– sequence: 4
  fullname: YU Han
Author_xml – sequence: 1
  fullname: 杜太行 赵黎媛 江春冬 于晗
BookMark eNo1jztLA0EcxLeIYIz5EmJhc-f-d-82e6UEXxCwSWF37O0jXtCN5hBjb6sGyzSixFJBLQLn68vcA7-FJ9FmBoYfM8wSqtmB1QitAnZpwIL1vhsniXUBY3B4QEcuwcBcIC4GUkP1_3x_ETWTJI4wocxjHoc6wvltmqVXWZrms4fv5_fyc1q-3OSP4-JtWrzel5OL7Osuv54V6Th_mmQfl8towYjDRDf_vIG6W5vd9o7T2dvebW90HMkwcQBTj0SEGqk0BS7BaAGRBIAgEoFimnmSE81NYFq-kZqD8ogykYYqV76iDbQ2rz0T1gjbC_uD06GtBkMVCzvqJ78PoRJSoStzVB4MbO8kruDjYXwkhucha2Hu-0Ax_QEyfmjh
ClassificationCodes TN97
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-893x.2016.12.012
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Signal Source Location Based on Artificial Fish School Particle Filter Algorithm
DocumentTitle_FL Signal Source Location Based on Artificial Fish School Particle Filter Algorithm
EndPage 1375
ExternalDocumentID dianxjs201612012
670855130
GrantInformation_xml – fundername: 工业和信息化部课题
  funderid: (12-MC-KY-14)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c602-10342b23fcde318c1fea1bc1119ba9d6e64c82e8f9f75fce81d42dfbe14c8d5d3
ISSN 1001-893X
IngestDate Thu May 29 03:55:22 EDT 2025
Wed Feb 14 10:07:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 移动监测车
信号源定位
angle of arrival( AOA)
mobile monitoring vehicle
粒子滤波
人工鱼群算法
particle filter
波达角
signal source location
artificial fish school algorithm
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c602-10342b23fcde318c1fea1bc1119ba9d6e64c82e8f9f75fce81d42dfbe14c8d5d3
Notes 51-1267/TN
PageCount 6
ParticipantIDs wanfang_journals_dianxjs201612012
chongqing_primary_670855130
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电讯技术
PublicationTitleAlternate Telecommunication Engineering
PublicationYear 2016
Publisher 河北省控制工程研究中心,天津300130%河北工业大学 控制科学与工程学院,天津,300130
河北工业大学 控制科学与工程学院,天津300130
Publisher_xml – name: 河北省控制工程研究中心,天津300130%河北工业大学 控制科学与工程学院,天津,300130
– name: 河北工业大学 控制科学与工程学院,天津300130
SSID ssib023646481
ssib001102885
ssib036437028
ssib051374628
ssib000459929
ssib009282364
ssib006568479
ssib018830122
Score 2.0447607
Snippet 针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入到粒子滤...
TN97; 针对传统粒子滤波算法精度不高、难以满足移动监测车对无线电信号源定位需求的问题,提出了一种基于人工鱼群粒子滤波的信号源定位方法。将人工鱼群算法的优化思想引入...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1370
SubjectTerms 人工鱼群算法
信号源定位
波达角
移动监测车
粒子滤波
Title 基于人工鱼群粒子滤波的信号源定位
URI http://lib.cqvip.com/qk/91166X/201612/670855130.html
https://d.wanfangdata.com.cn/periodical/dianxjs201612012
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-893X
  databaseCode: ADMLS
  dateStart: 20140501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib000459929
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNKxbEC-iqFirUqE5la3NTJJNjpndWYpYL66wt2W-0uJhW-0WSs9e1eKxF1HqRVBQD4X168_sB_4L38vMbkcoRWUhZF5e3uTlzb738vESQpaSVPvwszUvZaLGbaZqynIFjpywYA3BYiUYjbz-QK494vc6olOpvC_tWtrtxyvJ_qlxJf8jVYCBXDFK9h8kOyMKAMiDfCEFCUP6VzKmoaC6RQNDQ46pCosMQgQN6tQIGmoaMBo0aFinQUgNdxmPag9xTJPqVRpKGgSuCDI-NR7iaCDIHcEWNQyRVQtpIo5xtaB6iGiI06SqWfZ0HQWAQwMUopkWVlQGt1ZARjcAMpW2AzQRhiQ5NcZVYlQ1ljEHRIKckcDxKBBDB8uuKQy7AAkoxy20UlKD9WZdAmWa5vtzpxMceeRloY1xvxc4VJ2yuhay_Fl6JeXL_PwOksKQw6M4zUj4WmpnJPAdK9N37OE2P-mmhguifx7DLeu4ow8s_jky5-HcT5XMmeb6_Ydl51iXnU2GvlvpZCDwnMEVOCnXHl42P9OGTCkf1zmnz1gmS1HSPi6xrp4MFqEtdQwsdsv5RT-dJ0sFg3fPYg_PEdnc6m08Ae_IBav1bNTbKPlV7UvkYjEgWjT5132ZVPY3r5DV0evBcPBiOBiMjt_9-vRt8uNo8vnV6MPB-OvR-MvbyeGz4c83o5fH48HB6OPh8Pvzq6TdCtuNtVpxt0ctkXidDp48GXu-TVKchE-YzSIWJ2B4dRzpVGaSJ8rLlNUWlEaSwaiKe6mNMwbwVKT-NVLtbfWy62QRnMxMZpFVSmIYYRxHQgI1ntS5SCLrz5OFGbPd7fwIl-5MmvPkTsF-t_hj73RRMe893sEOY5B4N86ksEAuIGY-LXeTVPtPd7Nb4Kj249vFF_IbkBJwfA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BA%BA%E5%B7%A5%E9%B1%BC%E7%BE%A4%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E7%9A%84%E4%BF%A1%E5%8F%B7%E6%BA%90%E5%AE%9A%E4%BD%8D&rft.jtitle=%E7%94%B5%E8%AE%AF%E6%8A%80%E6%9C%AF&rft.au=%E6%9D%9C%E5%A4%AA%E8%A1%8C+%E8%B5%B5%E9%BB%8E%E5%AA%9B+%E6%B1%9F%E6%98%A5%E5%86%AC+%E4%BA%8E%E6%99%97&rft.date=2016&rft.issn=1001-893X&rft.volume=56&rft.issue=12&rft.spage=1370&rft.epage=1375&rft_id=info:doi/10.3969%2Fj.issn.1001-893x.2016.12.012&rft.externalDocID=670855130
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F91166X%2F91166X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdianxjs%2Fdianxjs.jpg