基于双层反卷积的宽场荧光显微图像盲复原
针对宽场荧光显微图像盲复原中的不适定性和细节模糊问题,提出了基于双层反卷积的宽场荧光显微图像盲复原算法,该算法通过双层反卷积,结合图像金字塔,实现了由粗略到细致的图像复原。为抑制不适定性,外层反卷积采用全变分模型,对复原图像和光学传递函数进行正则化约束。在内层反卷积中,通过残差图像进一步复原出图像细节。实验结果表明,该算法能在有效抑制伪影和噪声的同时,复原出宽场荧光显微图像的细节。与近几年图像盲复原算法相比,该算法所需的计算时间短,复原出的宽场荧光显微图像不仅有更好的视觉效果,而且客观上有较高的峰值信噪比和图像熵。...
Saved in:
| Published in | 计算机应用研究 Vol. 34; no. 4; pp. 1269 - 1272 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
重庆三峡学院信号与信息处理重点实验室,重庆404100
2017
重庆邮电大学通信与信息工程学院,重庆400065%重庆邮电大学通信与信息工程学院,重庆,400065%重庆三峡学院信号与信息处理重点实验室,重庆,404100 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-3695 |
| DOI | 10.3969/j.issn.1001-3695.2017.04.071 |
Cover
| Summary: | 针对宽场荧光显微图像盲复原中的不适定性和细节模糊问题,提出了基于双层反卷积的宽场荧光显微图像盲复原算法,该算法通过双层反卷积,结合图像金字塔,实现了由粗略到细致的图像复原。为抑制不适定性,外层反卷积采用全变分模型,对复原图像和光学传递函数进行正则化约束。在内层反卷积中,通过残差图像进一步复原出图像细节。实验结果表明,该算法能在有效抑制伪影和噪声的同时,复原出宽场荧光显微图像的细节。与近几年图像盲复原算法相比,该算法所需的计算时间短,复原出的宽场荧光显微图像不仅有更好的视觉效果,而且客观上有较高的峰值信噪比和图像熵。 |
|---|---|
| Bibliography: | 51-1196/TP Tan Zefu1,2, Ding Yanzhi2, Lei Guoping1 , Dai Minlu1 ( 1. Key Laboratory of Signal & Information Processing, Chongqing Three Gorges University, Chongqing 404100, China ; 2. Dept. of Communication & Information Engineering, Chongqing University of Posts & Telecommunications, Chongqing 400065, China) In order to solve the ill-posed problem and restore image details, this paper proposed a two-level deconvolution based image blind restoration algorithm for wide field fluorescence microscopic images. Using both two-level deconvolution scheme and image pyramid structure, the proposed algorithm estimated latent images from coarse to fine. To suppress ill-posed problem, outer-level deconvolution applied total variation regularization term to both latent image and optical transfer function. Inner-level deconvoluton used residual image to restore details information further. Experiment results show that the proposed algorithm can recover details of wide field microscopic images with both artifacts and noises s |
| ISSN: | 1001-3695 |
| DOI: | 10.3969/j.issn.1001-3695.2017.04.071 |