基于双层反卷积的宽场荧光显微图像盲复原

针对宽场荧光显微图像盲复原中的不适定性和细节模糊问题,提出了基于双层反卷积的宽场荧光显微图像盲复原算法,该算法通过双层反卷积,结合图像金字塔,实现了由粗略到细致的图像复原。为抑制不适定性,外层反卷积采用全变分模型,对复原图像和光学传递函数进行正则化约束。在内层反卷积中,通过残差图像进一步复原出图像细节。实验结果表明,该算法能在有效抑制伪影和噪声的同时,复原出宽场荧光显微图像的细节。与近几年图像盲复原算法相比,该算法所需的计算时间短,复原出的宽场荧光显微图像不仅有更好的视觉效果,而且客观上有较高的峰值信噪比和图像熵。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 4; pp. 1269 - 1272
Main Author 谭泽富 丁妍芝 雷国平 戴闽鲁
Format Journal Article
LanguageChinese
Published 重庆三峡学院信号与信息处理重点实验室,重庆404100 2017
重庆邮电大学通信与信息工程学院,重庆400065%重庆邮电大学通信与信息工程学院,重庆,400065%重庆三峡学院信号与信息处理重点实验室,重庆,404100
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.04.071

Cover

More Information
Summary:针对宽场荧光显微图像盲复原中的不适定性和细节模糊问题,提出了基于双层反卷积的宽场荧光显微图像盲复原算法,该算法通过双层反卷积,结合图像金字塔,实现了由粗略到细致的图像复原。为抑制不适定性,外层反卷积采用全变分模型,对复原图像和光学传递函数进行正则化约束。在内层反卷积中,通过残差图像进一步复原出图像细节。实验结果表明,该算法能在有效抑制伪影和噪声的同时,复原出宽场荧光显微图像的细节。与近几年图像盲复原算法相比,该算法所需的计算时间短,复原出的宽场荧光显微图像不仅有更好的视觉效果,而且客观上有较高的峰值信噪比和图像熵。
Bibliography:51-1196/TP
Tan Zefu1,2, Ding Yanzhi2, Lei Guoping1 , Dai Minlu1 ( 1. Key Laboratory of Signal & Information Processing, Chongqing Three Gorges University, Chongqing 404100, China ; 2. Dept. of Communication & Information Engineering, Chongqing University of Posts & Telecommunications, Chongqing 400065, China)
In order to solve the ill-posed problem and restore image details, this paper proposed a two-level deconvolution based image blind restoration algorithm for wide field fluorescence microscopic images. Using both two-level deconvolution scheme and image pyramid structure, the proposed algorithm estimated latent images from coarse to fine. To suppress ill-posed problem, outer-level deconvolution applied total variation regularization term to both latent image and optical transfer function. Inner-level deconvoluton used residual image to restore details information further. Experiment results show that the proposed algorithm can recover details of wide field microscopic images with both artifacts and noises s
ISSN:1001-3695
DOI:10.3969/j.issn.1001-3695.2017.04.071