基于高光谱的叶片滞尘量估测模型

为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730-1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 0...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 2; pp. 180 - 185
Main Author 李伟涛 吴见 陈泰生 彭道黎
Format Journal Article
LanguageChinese
Published 北京林业大学省部共建森林培育与保护教育部重点实验室,北京 100083 2016
安徽省地理信息集成应用协同创新中心,滁州 239000%滁州学院地理信息与旅游学院,滁州 239000
滁州学院地理信息与旅游学院,滁州 239000
安徽省地理信息集成应用协同创新中心,滁州 239000%北京林业大学省部共建森林培育与保护教育部重点实验室,北京,100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.02.026

Cover

More Information
Summary:为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730-1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 010 nm波段组成的归一化指数,713、725 nm波段组成的差值指数,749、644 nm波段组成的归一化植被指数为自变量建立的模型估测精度最好,其建模和预测的决定系数分别达到0.734和0.731,预测均方根误差为0.311。该研究为促进高光谱技术在大气降尘监测中的应用提供参考。
Bibliography:11-2047/S
Li Weitao,Wu Jian,Chen Taisheng,Peng Daoli (1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; 2. Geography Information and Tourism College, Chuzhou University, Chuzhou 239000, China; 3. Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou 239000, China)
Dustfall is an important indicator to characterize the regional atmospheric environment quality. The dustfall status and regional environmental quality can be reflected directly by dust deposition content on plant leaves. The acquisition of hyperspectral data measured at ground surface is more and more convenient in recent years with the development of hyperspectral technology. Study on inversion model for foliar dust deposition content based on hyperspectral data will improve the efficiency of atmospheric dust monitoring and spatial sampling. And the model can not only be used as an effective complement to traditional a
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2016.02.026