基于模式识别的半干旱区雨养春小麦干旱发生状况判别

为准确判断作物生长发育过程中农业干旱的发生状况,并预估作物产量,该研究以半干旱区1986-2011年生育期气象和产量资料为基础,分析雨养春小麦产量形成所受因素,以产量变动状况作为春小麦干旱和正常年景的判断标准。采用模式识别法,迭代求解建立可预测春小麦年景的线性分类方程,对半干旱雨养区农业干旱的发生状况进行判定。研究结果表明:半干旱雨养区春小麦产量形成受诸多因素影响。若不剔除其他因素的影响,仅以气象要素为基础无法建立判别方程,从而难以定量判断春小麦生育期农业干旱的发生状况。但在剔除播前50 cm层次土壤相对含水率大于55%的年份后,以主要生育期平均温度和降水量能够建立判别方程预测春小麦年景,从而...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 24; pp. 124 - 132
Main Author 赵福年 王润元
Format Journal Article
LanguageChinese
Published 中国气象局兰州干旱气象研究所 甘肃省干旱气候变化与减灾重点实验室中国气象局干旱气候变化与减灾重点实验室,兰州,730020 2014
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.24.015

Cover

More Information
Summary:为准确判断作物生长发育过程中农业干旱的发生状况,并预估作物产量,该研究以半干旱区1986-2011年生育期气象和产量资料为基础,分析雨养春小麦产量形成所受因素,以产量变动状况作为春小麦干旱和正常年景的判断标准。采用模式识别法,迭代求解建立可预测春小麦年景的线性分类方程,对半干旱雨养区农业干旱的发生状况进行判定。研究结果表明:半干旱雨养区春小麦产量形成受诸多因素影响。若不剔除其他因素的影响,仅以气象要素为基础无法建立判别方程,从而难以定量判断春小麦生育期农业干旱的发生状况。但在剔除播前50 cm层次土壤相对含水率大于55%的年份后,以主要生育期平均温度和降水量能够建立判别方程预测春小麦年景,从而可以对春小麦生长发育过程中的农业干旱发生状况进行定量分析。同时,5月份降水量对春小麦生长发育具有非常重要的作用,在播前50 cm层次土壤相对含水率小于55%时,只用5月份降水量一个气象要素即可较为准确地模拟估测春小麦产出。该研究可为干旱致害机理的进一步深入探讨提供参考依据。
Bibliography:crops; drought; pattern recognition; agricultural drought; precipitation; average temperature; yield
11-2047/S
Zhao Funian, Wang Runyuan (Lanzhou Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Disaster Reduction of Gansu Province, Key Laboratory of Arid Climate Change and Disaster Reduction of CMA, Lanzhou 730020, China)
The mechanism of the damage process for agricultural drought is very complex, and many factors can affect it. Agricultural drought is the main limiting factor for crop yield in rainfed area. For defining drought occurrence during the crop growth, and predicting crop yield, we used pattern recognition based on meteorological data during growing season and yield data of spring wheat in semi-arid rainfed area in Dingxi, China from 1986 to 2011. Owing to the application of deviation for crop yield from its long-term mean to define agricultural drought, we divided the year pattern into two categories: drought series, and normal series on
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.24.015