基于卡尔曼滤波的橘小实蝇成虫运动轨迹优化跟踪
为了实现橘小实蝇虫口密度的精准监测,该文将机器视觉技术作为田间橘小实蝇成虫入侵自动化监测的感知方法。通过对监测区域内运动目标和背景的颜色分析,提出了基于卡尔曼(Kalman)滤波的运动目标颜色均值漂移跟踪算法,优化了多目标运动轨迹跟踪效果。该算法通过图像处理和匹配技术提取了橘小实蝇成虫在虫口监测区域二维平面X轴和Y轴方向上的位置坐标和速度分量,推算了橘小实蝇成虫运动轨迹递推关系。基于动态系统的状态序列线性最小方差估计理论和成虫运动轨迹关系分析,构建了卡尔曼滤波状态估计模型,并建立其预测和修正方程实现了橘小实蝇成虫运动目标位置估计。通过在虫口监测区域开展单目标和多目标分散及粘连条件下的成虫跟踪试...
        Saved in:
      
    
          | Published in | 农业工程学报 Vol. 30; no. 15; pp. 197 - 205 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            国家柑橘产业技术体系机械研究室,广州 510642%中南林业科技大学机电工程学院,长沙,410004%广州出入境检验检疫局,广州,510623%中南林业科技大学理学院,长沙,410004
    
        2014
     华南农业大学工程学院 南方农业机械与装备关键技术教育部重点实验室,广州 510642%华南农业大学工程学院 南方农业机械与装备关键技术教育部重点实验室,广州 510642 中南林业科技大学机电工程学院,长沙 410004  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-6819 | 
| DOI | 10.3969/j.issn.1002-6819.2014.15.026 | 
Cover
| Summary: | 为了实现橘小实蝇虫口密度的精准监测,该文将机器视觉技术作为田间橘小实蝇成虫入侵自动化监测的感知方法。通过对监测区域内运动目标和背景的颜色分析,提出了基于卡尔曼(Kalman)滤波的运动目标颜色均值漂移跟踪算法,优化了多目标运动轨迹跟踪效果。该算法通过图像处理和匹配技术提取了橘小实蝇成虫在虫口监测区域二维平面X轴和Y轴方向上的位置坐标和速度分量,推算了橘小实蝇成虫运动轨迹递推关系。基于动态系统的状态序列线性最小方差估计理论和成虫运动轨迹关系分析,构建了卡尔曼滤波状态估计模型,并建立其预测和修正方程实现了橘小实蝇成虫运动目标位置估计。通过在虫口监测区域开展单目标和多目标分散及粘连条件下的成虫跟踪试验,试验结果表明颜色均值漂移跟踪算法对橘小实蝇成虫单目标跟踪具有较好的适应性,成虫监测计数准确率达100%,对于多目标分散和粘连情况跟踪处理效果较差,计数准确率分别下降至86%和76%;通过在颜色空间均值漂移跟踪算法的基础上引入 Kalman 滤波器估算目标运动的近似位置,实现了对橘小实蝇成虫分散和粘连多目标运动的持续跟踪优化,监测计数准确率分别提升至96%和93%。机器视觉技术实时跟踪橘小实蝇成虫在虫口监测区域运动轨迹试验进一步验证了橘小实蝇成虫虫口密度监测的可行性,为田间橘小实蝇成虫发生自动化监测技术研究提供了参考。 | 
|---|---|
| Bibliography: | 11-2047/S Bactrocera Dorsalis (Hendel) are invasive pests which occur frequently and are seriously harmful to the growth of fruit trees, and they have been ranked an important quarantine object in many countries and regions. The regular manual survey used as the routine predicting method for Bactrocera Dorsalis (Hendel) has not accomplished the requirement of real-time and precise monitoring and warning by means of the adult trapping and monitoring device deployed in orchards. With the development of science and technologies, the method of the automatic machine monitoring for pests has been studied including detection of sound characteristics, radar monitoring and spectral monitoring. Considering the characteristic with randomness, migratory and hiding for Bactrocera Dorsalis (Hendel), there were some problems such as timing, processing and costs in monitoring pests with the aid of combining the above monitoring and the traditional method. In order to accomplish precise monitoring for Bactrocera Dorsalis (Hend  | 
| ISSN: | 1002-6819 | 
| DOI: | 10.3969/j.issn.1002-6819.2014.15.026 |