M-DeepAssembly: enhanced DeepAssembly based on multi-objective multi-domain protein conformation sampling
Background Association and cooperation among structural domains play an important role in protein function and drug design. Despite remarkable advancements in highly accurate single-domain protein structure prediction through the collaborative efforts of the community using deep learning, challenges...
Saved in:
Published in | BMC bioinformatics Vol. 26; no. 1; pp. 120 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
05.05.2025
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-025-06131-2 |
Cover
Summary: | Background
Association and cooperation among structural domains play an important role in protein function and drug design. Despite remarkable advancements in highly accurate single-domain protein structure prediction through the collaborative efforts of the community using deep learning, challenges still exist in predicting multi-domain protein structures when the evolutionary signal for a given domain pair is weak or the protein structure is large.
Results
To alleviate the above challenges, we proposed M-DeepAssembly, a protocol based on multi-objective protein conformation sampling algorithm for multi-domain protein structure prediction. Firstly, the inter-domain interactions and full-length sequence distance features are extracted through DeepAssembly and AlphaFold2, respectively. Secondly, subject to these features, we constructed a multi-objective energy model and designed a sampling algorithm for exploring and exploiting conformational space to generate ensembles. Finally, the output protein structure was selected from the ensembles using our in-house developed model quality assessment algorithm. On the test set of 164 multi-domain proteins, the results show that the average TM-score of M-DeepAssembly is 15.4% and 2.0% higher than AlphaFold2 and DeepAssembly, respectively. It is worth noting that there are models with higher accuracy in ensembles, achieving an improvement of 20.3% and 6.4% relative to the two baseline methods, although these models were not selected. Furthermore, when compared to the prediction results of AlphaFold2 for CASP15 multi-domain targets, M-DeepAssembly demonstrates certain performance advantages.
Conclusions
M-DeepAssembly provides a distinctive multi-domain protein assembly algorithm, which can alleviate the current challenges of weak evolutionary signals and large structures to some extent by forming diverse ensembles using multi-objective protein conformation sampling algorithm. The proposed method contributes to exploring the functions of multi-domain proteins, especially providing new insights into targets with multiple conformational states. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-025-06131-2 |