Inhibitors of Cathepsin L Prevent Severe Acute Respiratory Syndrome Coronavirus Entry
Severe acute respiratory syndrome (SARS) is caused by an emergent coronavirus (SARS-CoV), for which there is currently no effective treatment. SARS-CoV mediates receptor binding and entry by its spike (S) glycoprotein, and infection is sensitive to lysosomotropic agents that perturb endosomal pH. We...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 33; pp. 11876 - 11881 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.08.2005
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.0505577102 |
Cover
Summary: | Severe acute respiratory syndrome (SARS) is caused by an emergent coronavirus (SARS-CoV), for which there is currently no effective treatment. SARS-CoV mediates receptor binding and entry by its spike (S) glycoprotein, and infection is sensitive to lysosomotropic agents that perturb endosomal pH. We demonstrate here that the lysosomotropic-agent-mediated block to SARS-CoV infection is overcome by protease treatment of target-cell-associated virus. In addition, SARS-CoV infection was blocked by specific inhibitors of the pH-sensitive endosomal protease cathepsin L. A cell-free membrane-fusion system demonstrates that engagement of receptor followed by proteolysis is required for SARS-CoV membrane fusion and indicates that cathepsin L is sufficient to activate membrane fusion by SARS-CoV S. These results suggest that SARS-CoV infection results from a unique, three-step process: receptor binding and induced conformational changes in S glycoprotein followed by cathepsin L proteolysis within endosomes. The requirement for cathepsin L proteolysis identifies a previously uncharacterized class of inhibitor for SARS-CoV infection. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 To whom correspondence may be addressed at: Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. E-mail: pbates@mail.med.upenn.edu or gsimmons@mail.med.upenn.edu. Author contributions: G.S., J.D.R., S.L.D., and P.B. designed research; G.S., D.N.G., A.J.R., and J.D.R. performed research; D.N.G. and S.L.D. contributed new reagents/analytic tools; G.S., D.N.G., A.J.R., J.D.R., and P.B. analyzed data; and G.S. and P.B. wrote the paper. Abbreviations: ACE2, angiotensin-converting enzyme 2; ASLV, avian sarcoma and leukosis virus; CTSB, cathepsin B; CTSL, cathepsin L; MLV, murine leukemia virus; TPCK, L-1-tosylamido-2-phenylethyl chloromethyl ketone; RLU, relative light units; S, spike (glycoprotein); SARS, severe acute respiratory syndrome; SARS-CoV, SARS-associated coronavirus; STI, soybean trypsin inhibitor; VSV, vesicular stomatitis virus; Z-lll-FMK, Z-leu-leu-leu-fluoromethyl ketone. Communicated by Harold E. Varmus, Memorial Sloan–Kettering Cancer Center, New York, NY, July 1, 2005 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0505577102 |