Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits
Layering of neural circuits facilitates the separation of neurons with high spatial sensitivity from those that play integrative temporal roles. Although anatomical layers are readily identifiable in the brain, layering is not structurally obvious in the spinal cord. But computational studies of mot...
Saved in:
Published in | Cell reports (Cambridge) Vol. 25; no. 1; pp. 146 - 156.e3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.10.2018
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2018.08.095 |
Cover
Summary: | Layering of neural circuits facilitates the separation of neurons with high spatial sensitivity from those that play integrative temporal roles. Although anatomical layers are readily identifiable in the brain, layering is not structurally obvious in the spinal cord. But computational studies of motor behaviors have led to the concept of layered processing in the spinal cord. It has been postulated that spinal V3 interneurons (INs) play multiple roles in locomotion, leading us to investigate whether they form layered microcircuits. Using patch-clamp recordings in combination with holographic glutamate uncaging, we demonstrate focal, layered modules, in which ventromedial V3 INs form synapses with one another and with ventrolateral V3 INs, which in turn form synapses with ipsilateral motoneurons. Motoneurons, in turn, provide recurrent excitatory, glutamatergic input to V3 INs. Thus, ventral V3 interneurons form layered microcircuits that could function to ensure well-timed, spatially specific movements.
[Display omitted]
•Two populations of ventral spinal V3 interneurons (INs) can be distinguished•Medial (V3VMed) and lateral (V3VLat) populations differ in connectivity patterns•Motoneuron axons recurrently excite ipsilateral V3 INs•Ventral spinal V3 INs form layered microcircuits for motor output
Using electrophysiology combined with holographic photostimulation, Chopek et al. demonstrate focal layered microcircuits within the spinal cord. These microcircuits are composed of two ventral V3 interneuron sub-populations and ipsilateral motoneurons. Synaptic connectivity was established from medial to lateral, with motoneurons recurrently exciting both V3 interneuron sub-populations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2018.08.095 |