Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes

Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two‐site prospective cohort study followed up a group...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 78; no. 6; pp. 860 - 870
Main Authors Feng, Wuwei, Wang, Jasmine, Chhatbar, Pratik Y., Doughty, Christopher, Landsittel, Douglas, Lioutas, Vasileios-Arsenios, Kautz, Steven A., Schlaug, Gottfried
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0364-5134
1531-8249
1531-8249
DOI10.1002/ana.24510

Cover

Abstract Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two‐site prospective cohort study followed up a group of first‐ever ischemic stroke patients using the Upper‐Extremity Fugl‐Meyer (UE‐FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST‐LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST‐LL and compared with initial motor impairment. Results Seventy‐six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST‐LL as well as assessment of motor impairment (UE‐FM) in the acute phase correlated with motor impairment (UE‐FM) at 3 months in both cohort 1 (R2 = 0.69 vs. R2 = 0.67; p = 0.43) and cohort 2 (R2 = 0.69 vs. R2 = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE‐FM ≤ 10 at baseline), wCST‐LL correlated with outcomes significantly better than clinical assessment (R2 = 0.47 vs. R2 = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE‐FM ≤ 25) when wCST‐LL was ≥ 7.0 cc (positive predictive value was 100%). Interpretation wCST‐LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860–870
AbstractList Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two‐site prospective cohort study followed up a group of first‐ever ischemic stroke patients using the Upper‐Extremity Fugl‐Meyer (UE‐FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST‐LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST‐LL and compared with initial motor impairment. Results Seventy‐six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST‐LL as well as assessment of motor impairment (UE‐FM) in the acute phase correlated with motor impairment (UE‐FM) at 3 months in both cohort 1 (R2 = 0.69 vs. R2 = 0.67; p = 0.43) and cohort 2 (R2 = 0.69 vs. R2 = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE‐FM ≤ 10 at baseline), wCST‐LL correlated with outcomes significantly better than clinical assessment (R2 = 0.47 vs. R2 = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE‐FM ≤ 25) when wCST‐LL was ≥ 7.0 cc (positive predictive value was 100%). Interpretation wCST‐LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860–870
Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Results Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R super(2)=0.69 vs. R super(2)=0.67; p=0.43) and cohort 2 (R super(2)=0.69 vs. R super(2)=0.62; p=0.25). In the severely impaired subgroup (defined as UE-FM less than or equal to 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R super(2)=0.47 vs. R super(2)=0.11; p=0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM less than or equal to 25) when wCST-LL was greater than or equal to 7.0 cc (positive predictive value was 100%). Interpretation wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015; 78:860-870
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2)  = 0.69 vs. R(2)  = 0.67; p = 0.43) and cohort 2 (R(2)  = 0.69 vs. R(2)  = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2)  = 0.47 vs. R(2)  = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%). wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline.
Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Results Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R2=0.69 vs. R2=0.67; p=0.43) and cohort 2 (R2=0.69 vs. R2=0.62; p=0.25). In the severely impaired subgroup (defined as UE-FM≤10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R2=0.47 vs. R2=0.11; p=0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM≤25) when wCST-LL was≥7.0 cc (positive predictive value was 100%). Interpretation wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860-870
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.OBJECTIVEThe aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment.METHODSA two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment.Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2)  = 0.69 vs. R(2)  = 0.67; p = 0.43) and cohort 2 (R(2)  = 0.69 vs. R(2)  = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2)  = 0.47 vs. R(2)  = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%).RESULTSSeventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2)  = 0.69 vs. R(2)  = 0.67; p = 0.43) and cohort 2 (R(2)  = 0.69 vs. R(2)  = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2)  = 0.47 vs. R(2)  = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%).wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline.INTERPRETATIONwCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline.
Author Feng, Wuwei
Doughty, Christopher
Wang, Jasmine
Kautz, Steven A.
Schlaug, Gottfried
Chhatbar, Pratik Y.
Lioutas, Vasileios-Arsenios
Landsittel, Douglas
Author_xml – sequence: 1
  givenname: Wuwei
  surname: Feng
  fullname: Feng, Wuwei
  organization: Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC
– sequence: 2
  givenname: Jasmine
  surname: Wang
  fullname: Wang, Jasmine
  organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston
– sequence: 3
  givenname: Pratik Y.
  surname: Chhatbar
  fullname: Chhatbar, Pratik Y.
  organization: Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, SC, Charleston
– sequence: 4
  givenname: Christopher
  surname: Doughty
  fullname: Doughty, Christopher
  organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston
– sequence: 5
  givenname: Douglas
  surname: Landsittel
  fullname: Landsittel, Douglas
  organization: Section on Biomarkers and Prediction Modeling, Department of Medicine, University of Pittsburgh, PA, Pittsburgh
– sequence: 6
  givenname: Vasileios-Arsenios
  surname: Lioutas
  fullname: Lioutas, Vasileios-Arsenios
  organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston
– sequence: 7
  givenname: Steven A.
  surname: Kautz
  fullname: Kautz, Steven A.
  organization: Ralph H. Johnson VA Medical Center, Charleston, SC
– sequence: 8
  givenname: Gottfried
  surname: Schlaug
  fullname: Schlaug, Gottfried
  email: gschlaug@bidmc.harvard.edu
  organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26289123$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9r2zAchkXpaJN2h32BIehlPbjVf9u9hazLBqE9tGOwi5CVn4ta20olma3ffsqS7FA22EkInvdFet4pOhz8AAi9o-SCEsIuzWAumJCUHKAJlZwWFRP1IZoQrkQhKRfHaBrjIyGkVpQcoWOmWFVTxifodu5DctbHtRtMh1MwNuEOovMD7rxZXeHZgF1vHtzwgBvnexOeIODWBxxT8E-Ae5_yxY_J-h7iKXrTmi7C2915gr5-ur6ffy6Wt4sv89mysLKWpBCs5FSAsCsDqm4bJTitJa24tUZBU1pJoG0q1TLWWp4fLlhFGqXajFSC1_wEfdj2roN_HiEm3btooevMAH6MmpalUvmX6n9QRapcq1RGz16hj34MWcyGkiXJiumGer-jxqaHlV6HLCi86L3VDFxuARt8jAFabV0yKTvNfl2nKdGb3XTeTf_eLSfOXyX2pX9jd-0_XAcv_wb17Ga2TxTbhIsJfv5J5Cm1Knkp9bebheZ3H78vlvdcE_4LHl6zLg
CitedBy_id crossref_primary_10_1007_s12975_016_0467_5
crossref_primary_10_1155_2016_7043767
crossref_primary_10_1177_15459683221115413
crossref_primary_10_1177_1545968316662708
crossref_primary_10_1111_cns_13799
crossref_primary_10_1002_hsr2_2221
crossref_primary_10_1097_NPT_0000000000000295
crossref_primary_10_1002_hbm_24338
crossref_primary_10_3389_fnhum_2017_00469
crossref_primary_10_1002_ana_24537
crossref_primary_10_1161_STROKEAHA_123_043897
crossref_primary_10_1177_1545968316680492
crossref_primary_10_1161_STROKEAHA_116_016478
crossref_primary_10_1002_hbm_25421
crossref_primary_10_3233_NRE_172412
crossref_primary_10_1055_a_1272_9435
crossref_primary_10_1002_ana_25080
crossref_primary_10_1016_j_neuropsychologia_2021_107980
crossref_primary_10_3389_fneur_2022_965856
crossref_primary_10_1136_bmjopen_2018_026435
crossref_primary_10_3174_ajnr_A6038
crossref_primary_10_1016_j_brs_2024_07_008
crossref_primary_10_1007_s11682_018_0006_y
crossref_primary_10_1016_j_neucli_2018_10_065
crossref_primary_10_3174_ajnr_A5180
crossref_primary_10_1016_j_neucli_2016_01_003
crossref_primary_10_1161_STROKEAHA_116_015264
crossref_primary_10_1016_j_jneumeth_2022_109612
crossref_primary_10_1016_j_hest_2019_12_002
crossref_primary_10_1161_STROKEAHA_119_026205
crossref_primary_10_1161_STROKEAHA_119_024946
crossref_primary_10_3389_fncel_2018_00245
crossref_primary_10_1109_TBME_2020_3027853
crossref_primary_10_3389_fnins_2024_1400944
crossref_primary_10_12688_f1000research_8722_1
crossref_primary_10_1002_hbm_23829
crossref_primary_10_1177_1545968316688799
crossref_primary_10_1212_WNL_0000000000209387
crossref_primary_10_1016_j_nicl_2016_09_015
crossref_primary_10_3389_fnins_2023_1228645
crossref_primary_10_1093_brain_awaa156
crossref_primary_10_1093_braincomms_fcaf016
crossref_primary_10_1016_j_pmr_2023_06_003
crossref_primary_10_1038_s41598_018_27541_8
crossref_primary_10_1177_15459683231177607
crossref_primary_10_1177_15459683231177604
crossref_primary_10_3390_neurolint14040069
crossref_primary_10_38025_2078_1962_2023_22_4_31_40
crossref_primary_10_1016_j_arrct_2020_100075
crossref_primary_10_3389_fneur_2021_634065
crossref_primary_10_1007_s00115_017_0369_0
crossref_primary_10_1109_TNSRE_2019_2924742
crossref_primary_10_3390_brainsci6040053
crossref_primary_10_1016_j_nicl_2022_103132
crossref_primary_10_3389_fneur_2018_00737
crossref_primary_10_3389_fneur_2019_00445
crossref_primary_10_1093_brain_awaa146
crossref_primary_10_1155_2022_7790730
crossref_primary_10_1007_s10072_020_04350_4
crossref_primary_10_1212_WNL_0000000000213408
crossref_primary_10_1523_JNEUROSCI_1311_23_2024
crossref_primary_10_3389_fneur_2020_00015
crossref_primary_10_1016_j_clinph_2019_04_711
crossref_primary_10_1161_STROKEAHA_115_012088
crossref_primary_10_1007_s00330_017_4868_y
crossref_primary_10_1093_brain_awz181
crossref_primary_10_1002_pri_1937
crossref_primary_10_1038_s41597_022_01401_7
crossref_primary_10_3389_fneur_2022_804133
crossref_primary_10_1177_1545968320921824
crossref_primary_10_1002_ana_24735
crossref_primary_10_1093_braincomms_fcac241
crossref_primary_10_1002_hbm_25629
crossref_primary_10_1212_WNL_0000000000200034
crossref_primary_10_1371_journal_pone_0189279
crossref_primary_10_1093_braincomms_fcab034
crossref_primary_10_3389_fnimg_2022_1098604
crossref_primary_10_1016_j_nicl_2019_102065
crossref_primary_10_3390_jcm9040975
crossref_primary_10_1111_ene_14494
crossref_primary_10_1016_j_nicl_2017_01_023
crossref_primary_10_1177_1545968317751210
crossref_primary_10_1038_s41598_019_56334_w
crossref_primary_10_3390_s23125398
crossref_primary_10_1136_jnnp_2021_327211
crossref_primary_10_3238_PersNeuro_2024_08_09_04
crossref_primary_10_1177_1545968320948610
crossref_primary_10_1111_ene_13296
crossref_primary_10_1155_2020_8883839
crossref_primary_10_1177_1545968317753074
crossref_primary_10_3389_fnins_2023_1241772
crossref_primary_10_1161_STROKEAHA_115_011576
crossref_primary_10_1016_j_clinph_2025_01_010
crossref_primary_10_4103_jcsr_jcsr_16_23
crossref_primary_10_3390_molecules26175173
crossref_primary_10_1044_2019_JSLHR_L_RSNP_19_0032
crossref_primary_10_3390_jcm12072601
crossref_primary_10_1093_brain_awy302
crossref_primary_10_1161_STROKEAHA_118_020814
crossref_primary_10_1016_j_clinph_2019_04_004
crossref_primary_10_1080_02699052_2024_2422382
crossref_primary_10_1016_j_jns_2020_117130
crossref_primary_10_1161_STROKEAHA_123_043159
crossref_primary_10_1177_15459683221078294
crossref_primary_10_1038_srep23271
crossref_primary_10_1093_brain_awac010
crossref_primary_10_1016_j_jocn_2016_01_034
crossref_primary_10_1212_WNL_0000000000207219
crossref_primary_10_1007_s11910_019_0919_x
crossref_primary_10_1152_jn_00715_2017
crossref_primary_10_1002_jnr_24525
crossref_primary_10_1088_1741_2552_adbebf
crossref_primary_10_1007_s00234_017_1816_0
crossref_primary_10_1016_j_jneumeth_2018_04_010
crossref_primary_10_1177_15459683211070278
crossref_primary_10_1155_2018_9853837
crossref_primary_10_1016_j_nicl_2022_103174
crossref_primary_10_1155_2019_9471921
crossref_primary_10_1152_jn_00561_2019
crossref_primary_10_1161_STROKEAHA_119_025696
crossref_primary_10_1177_1545968318787060
crossref_primary_10_2490_jjrmc_61_96
crossref_primary_10_3233_NRE_172395
crossref_primary_10_3233_NRE_172393
crossref_primary_10_1002_jmri_27911
crossref_primary_10_1136_svn_2017_000069
crossref_primary_10_1159_000477500
crossref_primary_10_1212_WNL_0000000000200517
crossref_primary_10_1016_j_pmrj_2018_04_012
crossref_primary_10_1159_000444149
crossref_primary_10_1177_11795735241266601
crossref_primary_10_1016_j_neulet_2019_03_005
crossref_primary_10_1097_WCO_0000000000000462
crossref_primary_10_1177_1479164116675491
crossref_primary_10_1177_1545968320932135
crossref_primary_10_1177_00315125231189339
crossref_primary_10_1002_acn3_488
crossref_primary_10_1177_15459683211054178
crossref_primary_10_1161_STROKEAHA_119_027700
crossref_primary_10_1016_j_neurom_2023_02_077
crossref_primary_10_1161_STROKEAHA_116_015790
crossref_primary_10_1161_STROKEAHA_120_028932
crossref_primary_10_3389_fneur_2019_00072
crossref_primary_10_1186_s12984_025_01568_1
crossref_primary_10_1177_15459683231173668
crossref_primary_10_1088_1741_2552_ad8961
crossref_primary_10_1016_j_clineuro_2022_107267
crossref_primary_10_1007_s10548_022_00937_6
crossref_primary_10_1080_08098131_2020_1795704
crossref_primary_10_1177_1545968319872996
crossref_primary_10_1016_j_mri_2022_06_001
crossref_primary_10_1017_cjn_2020_112
crossref_primary_10_3390_jpm12010081
crossref_primary_10_1177_1545968320975437
crossref_primary_10_1161_STROKEAHA_117_020607
crossref_primary_10_1016_j_neuroscience_2024_12_016
crossref_primary_10_1177_1545968316662528
crossref_primary_10_1177_0963689719837919
crossref_primary_10_1177_1545968319868718
crossref_primary_10_1038_s41598_018_29751_6
crossref_primary_10_1186_s12984_020_00747_6
crossref_primary_10_2490_prm_20240001
crossref_primary_10_1016_j_apmr_2024_06_022
crossref_primary_10_3389_fneur_2023_1323529
crossref_primary_10_3389_fnins_2018_00994
crossref_primary_10_1177_1545968319868714
crossref_primary_10_3390_brainsci13030412
crossref_primary_10_1161_STROKEAHA_118_021426
crossref_primary_10_1038_s41598_024_70083_5
crossref_primary_10_1002_ana_25265
crossref_primary_10_1002_ana_25386
crossref_primary_10_1097_MD_0000000000004534
crossref_primary_10_1016_j_nicl_2021_102935
crossref_primary_10_1038_s41746_020_00328_w
crossref_primary_10_1093_brain_awab082
crossref_primary_10_1016_j_nicl_2017_01_009
crossref_primary_10_1097_WCO_0000000000001085
crossref_primary_10_2490_jjrmc_60_1111
crossref_primary_10_1515_revneuro_2019_0047
crossref_primary_10_2490_prm_20210050
crossref_primary_10_1161_STROKEAHA_118_021319
crossref_primary_10_1161_STROKEAHA_119_025898
crossref_primary_10_1056_NEJMra1706158
crossref_primary_10_1155_2022_4203698
crossref_primary_10_1007_s00415_020_10143_8
crossref_primary_10_1007_s00429_023_02630_1
crossref_primary_10_1113_JP281311
crossref_primary_10_1177_0271678X20903697
crossref_primary_10_1177_15459683211028240
crossref_primary_10_1038_s41598_023_38749_8
crossref_primary_10_1016_S1474_4422_17_30283_1
crossref_primary_10_1186_s12984_024_01513_8
crossref_primary_10_1136_neurintsurg_2020_016834
crossref_primary_10_1212_WNL_0000000000012366
crossref_primary_10_1186_s12984_023_01153_4
crossref_primary_10_1016_j_nicl_2018_10_003
crossref_primary_10_3389_fneur_2019_00836
crossref_primary_10_1016_j_neuroimage_2024_120828
crossref_primary_10_1007_s12975_017_0551_5
crossref_primary_10_1016_j_neuroimage_2018_08_002
crossref_primary_10_1093_braincomms_fcad055
crossref_primary_10_1002_hbm_25583
crossref_primary_10_1007_s00429_016_1325_7
crossref_primary_10_1136_bmjopen_2020_037391
crossref_primary_10_1016_j_nicl_2021_102639
crossref_primary_10_1177_1747493017714176
crossref_primary_10_3389_fnins_2024_1509850
crossref_primary_10_1016_j_neurom_2024_07_010
crossref_primary_10_1177_0271678X19875212
crossref_primary_10_3390_jpm11111162
crossref_primary_10_14814_phy2_15659
crossref_primary_10_1002_acn3_278
crossref_primary_10_3389_fneur_2022_854915
crossref_primary_10_1002_hbm_25338
crossref_primary_10_1177_15459683231152816
crossref_primary_10_1002_ana_25679
crossref_primary_10_1136_jnnp_2020_324637
crossref_primary_10_12680_balneo_2019_263
crossref_primary_10_1002_hbm_26105
crossref_primary_10_1002_hbm_25015
crossref_primary_10_1007_s10072_021_05600_9
crossref_primary_10_1007_s11910_023_01319_6
crossref_primary_10_3389_fnhum_2022_887849
crossref_primary_10_1161_STROKEAHA_117_018844
crossref_primary_10_1016_j_nicl_2022_103103
crossref_primary_10_1161_STROKEAHA_118_023006
crossref_primary_10_1177_1545968320935820
crossref_primary_10_1016_j_clinph_2023_12_064
crossref_primary_10_4103_1673_5374_297060
crossref_primary_10_1002_acn3_51292
crossref_primary_10_1177_1545968317740634
crossref_primary_10_3389_fneur_2022_878638
crossref_primary_10_1007_s12975_017_0550_6
crossref_primary_10_1161_STROKEAHA_116_016020
crossref_primary_10_1002_ana_25206
crossref_primary_10_1007_s12975_022_01115_3
crossref_primary_10_1111_cns_13946
crossref_primary_10_1111_nyas_13726
crossref_primary_10_12688_f1000research_135245_1
crossref_primary_10_1177_1545968317732680
crossref_primary_10_3389_fcell_2022_1062807
crossref_primary_10_1177_1545968318785044
crossref_primary_10_3233_RNN_170747
crossref_primary_10_3389_fnins_2024_1348103
crossref_primary_10_1093_brain_awab439
crossref_primary_10_1002_hbm_23059
crossref_primary_10_3389_fneur_2017_00029
crossref_primary_10_3390_jcm12216734
crossref_primary_10_1016_j_bbr_2016_08_029
crossref_primary_10_1093_braincomms_fcae254
crossref_primary_10_3390_jcm12237413
Cites_doi 10.1093/brain/aws115
10.1002/hbm.21266
10.1016/S1388-2457(03)00252-9
10.1093/brain/aws146
10.1177/1545968314562115
10.1161/STROKEAHA.109.577023
10.1161/01.STR.0000258077.88064.a3
10.1161/hs0102.101224
10.1093/cercor/bhr047
10.1161/01.STR.0000068410.07397.D7
10.2340/1650197771331
10.1155/2000/421719
10.1093/brain/awl002
10.1002/ana.21636
10.1161/01.STR.24.1.35
10.1161/STROKEAHA.109.572065
10.1016/j.mehy.2005.05.017
10.1038/nn1699
10.3174/ajnr.A2400
10.1177/1545968307305302
10.1016/S1474-4422(10)70314-8
10.1053/mr.2000.3837
10.1111/j.1468-1331.2011.03615.x
10.1161/01.STR.25.11.2183
10.1161/01.STR.25.11.2220
10.1161/01.STR.29.9.1854
10.1016/0924-980X(96)95656-8
10.1161/01.STR.23.8.1084
10.1186/1741-7015-8-60
10.1093/brain/awl333
10.1002/jmri.22315
10.1093/ptj/63.10.1606
ContentType Journal Article
Copyright 2015 American Neurological Association
2015 American Neurological Association.
Copyright_xml – notice: 2015 American Neurological Association
– notice: 2015 American Neurological Association.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.24510
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 870
ExternalDocumentID 3922244271
26289123
10_1002_ana_24510
ANA24510
ark_67375_WNG_3SDZGLT3_0
Genre article
Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Richard and Rosalyn Slifka Family Fund
– fundername: Tom and Suzanne McManmon Family Fund
– fundername: National Institutes of Health (NIH)
  funderid: UL1 RR029882 ; UL1 TR000062 ; NIH P20GM109040
– fundername: Rehabilitation Research & Development Service of the Department of Veterans Affairs
  funderid: NIH 1R01 DC008796 ; R01 DC009823‐01
– fundername: Mary Crown and William Ellis Fund
– fundername: South Carolina Clinical & Translational Research Institute/Medical University of South Carolina
– fundername: American Heart Association Scientist Development Grant
  funderid: 14SDG1829003
– fundername: Doris Duke Charitable Foundation
– fundername: NIDCD NIH HHS
  grantid: R01 DC009823
– fundername: NIGMS NIH HHS
  grantid: P20 GM109040
– fundername: NIDCD NIH HHS
  grantid: 1R01 DC008796
– fundername: NIDCD NIH HHS
  grantid: R01 DC008796
– fundername: NIGMS NIH HHS
  grantid: P20GM109040
– fundername: NCATS NIH HHS
  grantid: UL1 TR000062
– fundername: NIDCD NIH HHS
  grantid: R01 DC009823-01
– fundername: NCRR NIH HHS
  grantid: UL1 RR029882
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
ID FETCH-LOGICAL-c5950-427314e4cdae69fb643195183cca6eb7c50efb86f22fc30004280b66f18384393
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Fri Sep 05 08:23:12 EDT 2025
Thu Sep 04 17:05:49 EDT 2025
Fri Jul 25 12:21:09 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Tue Jul 01 02:24:06 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Sun Sep 21 06:20:08 EDT 2025
Sun Sep 21 06:18:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5950-427314e4cdae69fb643195183cca6eb7c50efb86f22fc30004280b66f18384393
Notes Mary Crown and William Ellis Fund
American Heart Association Scientist Development Grant - No. 14SDG1829003
Richard and Rosalyn Slifka Family Fund
Doris Duke Charitable Foundation
Tom and Suzanne McManmon Family Fund
South Carolina Clinical & Translational Research Institute/Medical University of South Carolina
National Institutes of Health (NIH) - No. UL1 RR029882; No. UL1 TR000062; No. NIH P20GM109040
Rehabilitation Research & Development Service of the Department of Veterans Affairs - No. NIH 1R01 DC008796; No. R01 DC009823-01
istex:9F824F4EE13D96C6BFF3B8A68BF8294BDF9E3600
ark:/67375/WNG-3SDZGLT3-0
ArticleID:ANA24510
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4715758
PMID 26289123
PQID 1757051016
PQPubID 946345
PageCount 11
ParticipantIDs proquest_miscellaneous_1776662869
proquest_miscellaneous_1760883866
proquest_journals_1757051016
pubmed_primary_26289123
crossref_citationtrail_10_1002_ana_24510
crossref_primary_10_1002_ana_24510
wiley_primary_10_1002_ana_24510_ANA24510
istex_primary_ark_67375_WNG_3SDZGLT3_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Smania N, Paolucci S, Tinazzi M, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007;38:1088-1090.
Puig J, Pedraza S, Blasco G, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol 2011;32:857-863.
Mak W, Cheng TS, Chan KH, Cheung RT, Ho SL. A possible explanation for the racial difference in distribution of large-arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries. Med Hypotheses 2005;65:637-648.
Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G; EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 2010;41:745-750.
Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile AM, Wolfe CD, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in europe: Data from a multicenter multinational hospital-based registry. Stroke 2003;34:1114-1119.
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand J Rehabil Med 1975;7:13-31.
Mark VW, Taub E, Perkins C, Gauthier L, Uswatte G. MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis. Restor Neurol Neurosci 2008;26:13-33.
Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 2012;33:1040-1051.
Chen CL, Tang FT, Chen HC, Chung CY, Wong MK. Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil 2000;81:447-452.
Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191-200.
Marshall RS, Zarahn E, Alon L, et al. Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 2009;65:596-602.
Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 2015;29:614-622.
Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992;23:1084-1089.
Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29:1854-1859.
Bagg S, Pombo AP, Hopman W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002;33:179-185.
Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9:735-737.
Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med 2010;8:60.
Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994;25:2220-2226.
Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies. Eur J Neurol 2012;19:718-724.
Adams HP, Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35-41.
Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 2011;21:2712-2721.
Ward NS, Newton JM, Swayne OB, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006;129:809-819.
Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983;63:1606-1610.
Seitz RJ, Donnan GA. Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 2010;32:756-772.
Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain 2012;135:2527-2535.
Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135(pt 7):2277-2289.
Catano A, Houa M, Caroyer JM, Ducarne H, Noel P. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 1996;101:233-239.
Zhu LL, Lindenberg R, Alexander MP, Schlaug G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 2010;41:910-915.
Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 2008;22:64-71.
Arac N, Sagduyu A, Binai S, Ertekin C. Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke 1994;25:2183-2186.
Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130:170-180.
Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011;10:123-130.
Dachy B, Biltiau E, Bouillot E, Dan B, Deltenre P. Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations. Clin Neurophysiol 2003;114:2370-2375.
1998; 29
2010; 32
1993; 24
2009; 65
2006; 9
2002; 33
1994; 25
2005; 65
2011; 32
2012; 19
2011; 10
2003; 114
1996; 101
2012; 33
2010; 41
2003; 34
2007; 38
2015; 29
2012; 135
2000; 12
2007; 130
2008; 26
2000; 81
2011; 21
1983; 63
2008; 22
1975; 7
2006; 129
1992; 23
2010; 8
Mark VW (e_1_2_8_28_1) 2008; 26
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
Carlo A (e_1_2_8_3_1) 2003; 34
e_1_2_8_17_1
e_1_2_8_18_1
Fugl‐Meyer AR (e_1_2_8_23_1) 1975; 7
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
16680163 - Nat Neurosci. 2006 Jun;9(6):735-7
20942915 - BMC Med. 2010;8:60
9731608 - Stroke. 1998 Sep;29(9):1854-9
21527788 - Cereb Cortex. 2011 Dec;21(12):2712-21
7974549 - Stroke. 1994 Nov;25(11):2220-6
21216670 - Lancet Neurol. 2011 Feb;10(2):123-30
19479972 - Ann Neurol. 2009 May;65(5):596-602
11568431 - Behav Neurol. 2000;12(4):191-200
20882606 - J Magn Reson Imaging. 2010 Oct;32(4):756-72
20167916 - Stroke. 2010 Apr;41(4):745-50
10768534 - Arch Phys Med Rehabil. 2000 Apr;81(4):447-52
7974543 - Stroke. 1994 Nov;25(11):2183-6
16006051 - Med Hypotheses. 2005;65(4):637-48
8647036 - Electroencephalogr Clin Neurophysiol. 1996 Jun;101(3):233-9
14652097 - Clin Neurophysiol. 2003 Dec;114(12):2370-5
22221491 - Eur J Neurol. 2012 May;19(5):718-24
1135616 - Scand J Rehabil Med. 1975;7(1):13-31
12690218 - Stroke. 2003 May;34(5):1114-9
22689909 - Brain. 2012 Aug;135(Pt 8):2527-35
16421171 - Brain. 2006 Mar;129(Pt 3):809-19
20378864 - Stroke. 2010 May;41(5):910-5
26435166 - Ann Neurol. 2015 Dec;78(6):845-7
17148468 - Brain. 2007 Jan;130(Pt 1):170-80
25505223 - Neurorehabil Neural Repair. 2015 Aug;29(7):614-22
6622535 - Phys Ther. 1983 Oct;63(10):1606-10
11779908 - Stroke. 2002 Jan;33(1):179-85
21474629 - AJNR Am J Neuroradiol. 2011 May;32(5):857-63
18431003 - Restor Neurol Neurosci. 2008;26(1):13-33
22581799 - Brain. 2012 Jul;135(Pt 7):2277-89
7678184 - Stroke. 1993 Jan;24(1):35-41
1636182 - Stroke. 1992 Aug;23(8):1084-9
17255546 - Stroke. 2007 Mar;38(3):1088-90
17687024 - Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):64-71
21538700 - Hum Brain Mapp. 2012 May;33(5):1040-51
References_xml – reference: Bagg S, Pombo AP, Hopman W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002;33:179-185.
– reference: Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med 2010;8:60.
– reference: Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G; EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 2010;41:745-750.
– reference: Smania N, Paolucci S, Tinazzi M, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007;38:1088-1090.
– reference: Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130:170-180.
– reference: Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994;25:2220-2226.
– reference: Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies. Eur J Neurol 2012;19:718-724.
– reference: Puig J, Pedraza S, Blasco G, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol 2011;32:857-863.
– reference: Ward NS, Newton JM, Swayne OB, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006;129:809-819.
– reference: Chen CL, Tang FT, Chen HC, Chung CY, Wong MK. Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil 2000;81:447-452.
– reference: Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011;10:123-130.
– reference: Adams HP, Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35-41.
– reference: Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9:735-737.
– reference: Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 2012;33:1040-1051.
– reference: Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile AM, Wolfe CD, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in europe: Data from a multicenter multinational hospital-based registry. Stroke 2003;34:1114-1119.
– reference: Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992;23:1084-1089.
– reference: Zhu LL, Lindenberg R, Alexander MP, Schlaug G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 2010;41:910-915.
– reference: Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191-200.
– reference: Mark VW, Taub E, Perkins C, Gauthier L, Uswatte G. MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis. Restor Neurol Neurosci 2008;26:13-33.
– reference: Dachy B, Biltiau E, Bouillot E, Dan B, Deltenre P. Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations. Clin Neurophysiol 2003;114:2370-2375.
– reference: Arac N, Sagduyu A, Binai S, Ertekin C. Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke 1994;25:2183-2186.
– reference: Marshall RS, Zarahn E, Alon L, et al. Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 2009;65:596-602.
– reference: Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135(pt 7):2277-2289.
– reference: Mak W, Cheng TS, Chan KH, Cheung RT, Ho SL. A possible explanation for the racial difference in distribution of large-arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries. Med Hypotheses 2005;65:637-648.
– reference: Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 2015;29:614-622.
– reference: Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983;63:1606-1610.
– reference: Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain 2012;135:2527-2535.
– reference: Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 2011;21:2712-2721.
– reference: Seitz RJ, Donnan GA. Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 2010;32:756-772.
– reference: Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand J Rehabil Med 1975;7:13-31.
– reference: Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29:1854-1859.
– reference: Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 2008;22:64-71.
– reference: Catano A, Houa M, Caroyer JM, Ducarne H, Noel P. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 1996;101:233-239.
– volume: 8
  start-page: 60
  year: 2010
  article-title: The effects of increased dose of exercise‐based therapies to enhance motor recovery after stroke: a systematic review and meta‐analysis
  publication-title: BMC Med
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav Neurol
– volume: 135
  start-page: 2277
  issue: pt 7
  year: 2012
  end-page: 2289
  article-title: Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey
  publication-title: Brain
– volume: 26
  start-page: 13
  year: 2008
  end-page: 33
  article-title: MRI infarction load and CI therapy outcomes for chronic post‐stroke hemiparesis
  publication-title: Restor Neurol Neurosci
– volume: 129
  start-page: 809
  year: 2006
  end-page: 819
  article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity
  publication-title: Brain
– volume: 41
  start-page: 745
  year: 2010
  end-page: 750
  article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study
  publication-title: Stroke
– volume: 21
  start-page: 2712
  year: 2011
  end-page: 2721
  article-title: Prediction of motor recovery using initial impairment and fMRI 48 h poststroke
  publication-title: Cereb Cortex
– volume: 22
  start-page: 64
  year: 2008
  end-page: 71
  article-title: Inter‐individual variability in the capacity for motor recovery after ischemic stroke
  publication-title: Neurorehabil Neural Repair
– volume: 29
  start-page: 614
  year: 2015
  end-page: 622
  article-title: Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke
  publication-title: Neurorehabil Neural Repair
– volume: 101
  start-page: 233
  year: 1996
  end-page: 239
  article-title: Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 63
  start-page: 1606
  year: 1983
  end-page: 1610
  article-title: Reliability of the Fugl‐Meyer assessment of sensorimotor recovery following cerebrovascular accident
  publication-title: Phys Ther
– volume: 33
  start-page: 1040
  year: 2012
  end-page: 1051
  article-title: Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging
  publication-title: Hum Brain Mapp
– volume: 130
  start-page: 170
  year: 2007
  end-page: 180
  article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity
  publication-title: Brain
– volume: 135
  start-page: 2527
  year: 2012
  end-page: 2535
  article-title: The prep algorithm predicts potential for upper limb recovery after stroke
  publication-title: Brain
– volume: 32
  start-page: 756
  year: 2010
  end-page: 772
  article-title: Role of neuroimaging in promoting long‐term recovery from ischemic stroke
  publication-title: J Magn Reson Imaging
– volume: 34
  start-page: 1114
  year: 2003
  end-page: 1119
  article-title: Sex differences in the clinical presentation, resource use, and 3‐month outcome of acute stroke in europe: Data from a multicenter multinational hospital‐based registry
  publication-title: Stroke
– volume: 38
  start-page: 1088
  year: 2007
  end-page: 1090
  article-title: Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke
  publication-title: Stroke
– volume: 65
  start-page: 637
  year: 2005
  end-page: 648
  article-title: A possible explanation for the racial difference in distribution of large‐arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries
  publication-title: Med Hypotheses
– volume: 9
  start-page: 735
  year: 2006
  end-page: 737
  article-title: BDNF val66met polymorphism is associated with modified experience‐dependent plasticity in human motor cortex
  publication-title: Nat Neurosci
– volume: 25
  start-page: 2220
  year: 1994
  end-page: 2226
  article-title: Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group
  publication-title: Stroke
– volume: 10
  start-page: 123
  year: 2011
  end-page: 130
  article-title: Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo‐controlled trial
  publication-title: Lancet Neurol
– volume: 65
  start-page: 596
  year: 2009
  end-page: 602
  article-title: Early imaging correlates of subsequent motor recovery after stroke
  publication-title: Ann Neurol
– volume: 114
  start-page: 2370
  year: 2003
  end-page: 2375
  article-title: Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations
  publication-title: Clin Neurophysiol
– volume: 32
  start-page: 857
  year: 2011
  end-page: 863
  article-title: Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke
  publication-title: AJNR Am J Neuroradiol
– volume: 19
  start-page: 718
  year: 2012
  end-page: 724
  article-title: Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies
  publication-title: Eur J Neurol
– volume: 24
  start-page: 35
  year: 1993
  end-page: 41
  article-title: Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment
  publication-title: Stroke
– volume: 23
  start-page: 1084
  year: 1992
  end-page: 1089
  article-title: Measurement of motor recovery after stroke. Outcome assessment and sample size requirements
  publication-title: Stroke
– volume: 81
  start-page: 447
  year: 2000
  end-page: 452
  article-title: Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients
  publication-title: Arch Phys Med Rehabil
– volume: 29
  start-page: 1854
  year: 1998
  end-page: 1859
  article-title: Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke
  publication-title: Stroke
– volume: 7
  start-page: 13
  year: 1975
  end-page: 31
  article-title: The post‐stroke hemiplegic patient: a method for evaluation of physical performance
  publication-title: Scand J Rehabil Med
– volume: 41
  start-page: 910
  year: 2010
  end-page: 915
  article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke
  publication-title: Stroke
– volume: 33
  start-page: 179
  year: 2002
  end-page: 185
  article-title: Effect of age on functional outcomes after stroke rehabilitation
  publication-title: Stroke
– volume: 25
  start-page: 2183
  year: 1994
  end-page: 2186
  article-title: Prognostic value of transcranial magnetic stimulation in acute stroke
  publication-title: Stroke
– ident: e_1_2_8_34_1
  doi: 10.1093/brain/aws115
– ident: e_1_2_8_33_1
  doi: 10.1002/hbm.21266
– ident: e_1_2_8_16_1
  doi: 10.1016/S1388-2457(03)00252-9
– ident: e_1_2_8_29_1
  doi: 10.1093/brain/aws146
– ident: e_1_2_8_27_1
  doi: 10.1177/1545968314562115
– ident: e_1_2_8_12_1
  doi: 10.1161/STROKEAHA.109.577023
– ident: e_1_2_8_7_1
  doi: 10.1161/01.STR.0000258077.88064.a3
– ident: e_1_2_8_2_1
  doi: 10.1161/hs0102.101224
– ident: e_1_2_8_14_1
  doi: 10.1093/cercor/bhr047
– volume: 34
  start-page: 1114
  year: 2003
  ident: e_1_2_8_3_1
  article-title: Sex differences in the clinical presentation, resource use, and 3‐month outcome of acute stroke in europe: Data from a multicenter multinational hospital‐based registry
  publication-title: Stroke
  doi: 10.1161/01.STR.0000068410.07397.D7
– volume: 7
  start-page: 13
  year: 1975
  ident: e_1_2_8_23_1
  article-title: The post‐stroke hemiplegic patient: a method for evaluation of physical performance
  publication-title: Scand J Rehabil Med
  doi: 10.2340/1650197771331
– ident: e_1_2_8_26_1
  doi: 10.1155/2000/421719
– ident: e_1_2_8_20_1
  doi: 10.1093/brain/awl002
– ident: e_1_2_8_21_1
  doi: 10.1002/ana.21636
– ident: e_1_2_8_22_1
  doi: 10.1161/01.STR.24.1.35
– ident: e_1_2_8_5_1
  doi: 10.1161/STROKEAHA.109.572065
– ident: e_1_2_8_8_1
  doi: 10.1016/j.mehy.2005.05.017
– ident: e_1_2_8_30_1
  doi: 10.1038/nn1699
– ident: e_1_2_8_10_1
  doi: 10.3174/ajnr.A2400
– ident: e_1_2_8_13_1
  doi: 10.1177/1545968307305302
– ident: e_1_2_8_32_1
  doi: 10.1016/S1474-4422(10)70314-8
– ident: e_1_2_8_9_1
  doi: 10.1053/mr.2000.3837
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1468-1331.2011.03615.x
– volume: 26
  start-page: 13
  year: 2008
  ident: e_1_2_8_28_1
  article-title: MRI infarction load and CI therapy outcomes for chronic post‐stroke hemiparesis
  publication-title: Restor Neurol Neurosci
– ident: e_1_2_8_17_1
  doi: 10.1161/01.STR.25.11.2183
– ident: e_1_2_8_25_1
  doi: 10.1161/01.STR.25.11.2220
– ident: e_1_2_8_15_1
  doi: 10.1161/01.STR.29.9.1854
– ident: e_1_2_8_18_1
  doi: 10.1016/0924-980X(96)95656-8
– ident: e_1_2_8_6_1
  doi: 10.1161/01.STR.23.8.1084
– ident: e_1_2_8_4_1
  doi: 10.1186/1741-7015-8-60
– ident: e_1_2_8_11_1
  doi: 10.1093/brain/awl333
– ident: e_1_2_8_19_1
  doi: 10.1002/jmri.22315
– ident: e_1_2_8_24_1
  doi: 10.1093/ptj/63.10.1606
– reference: 25505223 - Neurorehabil Neural Repair. 2015 Aug;29(7):614-22
– reference: 14652097 - Clin Neurophysiol. 2003 Dec;114(12):2370-5
– reference: 18431003 - Restor Neurol Neurosci. 2008;26(1):13-33
– reference: 22221491 - Eur J Neurol. 2012 May;19(5):718-24
– reference: 22689909 - Brain. 2012 Aug;135(Pt 8):2527-35
– reference: 21216670 - Lancet Neurol. 2011 Feb;10(2):123-30
– reference: 19479972 - Ann Neurol. 2009 May;65(5):596-602
– reference: 6622535 - Phys Ther. 1983 Oct;63(10):1606-10
– reference: 9731608 - Stroke. 1998 Sep;29(9):1854-9
– reference: 20882606 - J Magn Reson Imaging. 2010 Oct;32(4):756-72
– reference: 12690218 - Stroke. 2003 May;34(5):1114-9
– reference: 1636182 - Stroke. 1992 Aug;23(8):1084-9
– reference: 17255546 - Stroke. 2007 Mar;38(3):1088-90
– reference: 21474629 - AJNR Am J Neuroradiol. 2011 May;32(5):857-63
– reference: 20167916 - Stroke. 2010 Apr;41(4):745-50
– reference: 7974549 - Stroke. 1994 Nov;25(11):2220-6
– reference: 10768534 - Arch Phys Med Rehabil. 2000 Apr;81(4):447-52
– reference: 20378864 - Stroke. 2010 May;41(5):910-5
– reference: 7678184 - Stroke. 1993 Jan;24(1):35-41
– reference: 17687024 - Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):64-71
– reference: 17148468 - Brain. 2007 Jan;130(Pt 1):170-80
– reference: 22581799 - Brain. 2012 Jul;135(Pt 7):2277-89
– reference: 21538700 - Hum Brain Mapp. 2012 May;33(5):1040-51
– reference: 11568431 - Behav Neurol. 2000;12(4):191-200
– reference: 21527788 - Cereb Cortex. 2011 Dec;21(12):2712-21
– reference: 16421171 - Brain. 2006 Mar;129(Pt 3):809-19
– reference: 16006051 - Med Hypotheses. 2005;65(4):637-48
– reference: 11779908 - Stroke. 2002 Jan;33(1):179-85
– reference: 20942915 - BMC Med. 2010;8:60
– reference: 8647036 - Electroencephalogr Clin Neurophysiol. 1996 Jun;101(3):233-9
– reference: 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7
– reference: 7974543 - Stroke. 1994 Nov;25(11):2183-6
– reference: 1135616 - Scand J Rehabil Med. 1975;7(1):13-31
– reference: 26435166 - Ann Neurol. 2015 Dec;78(6):845-7
SSID ssj0009610
Score 2.603264
Snippet Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome...
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months...
Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 860
SubjectTerms Adult
Aged
Biomarkers
Brain Ischemia - pathology
Brain Ischemia - physiopathology
Female
Follow-Up Studies
Humans
Magnetic Resonance Imaging - methods
Male
Middle Aged
Outcome Assessment (Health Care) - methods
Prognosis
Pyramidal Tracts - pathology
Pyramidal Tracts - physiopathology
Recovery of Function - physiology
Severity of Illness Index
Stroke
Stroke - diagnosis
Stroke - pathology
Stroke - physiopathology
Time Factors
Upper Extremity - physiopathology
Title Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes
URI https://api.istex.fr/ark:/67375/WNG-3SDZGLT3-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24510
https://www.ncbi.nlm.nih.gov/pubmed/26289123
https://www.proquest.com/docview/1757051016
https://www.proquest.com/docview/1760883866
https://www.proquest.com/docview/1776662869
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lgvhivbu1ShQRX2Y7uc5En5bWtohdQVssIoQkm4B0O1N2Z0H663uSuZRKFfFtZvIFcjuZL8k5XxB6rSQPxBCSGUpMxq0qMytLHr3MmXLWB2NigPPhVB4c848n4mQNve9jYVp9iGHDLVpGmq-jgRu73L4SDTWVGVMuUngVYTLq5u9-uZKOUjIpEcRjtkwQxntVoZxuDzmv_YtuxWb9dRPRvM5b049nbwP96Ivc-pucjleNHbuL39Qc_7NO99DdjpDiSTuC7qM1Xz1Atw-7I_eH6PNOHZPi9SIR18SoKjz3cZMNz2sze4cnFf55li47wjGYP_r7LDBwYbxsFvWpxzAY4KVeNVAav3yEjvc-HO0cZN0tDJkTSuQZB4JDuOduZrxUwQKFIUDLSgZ9L70tnMh9sKUMlAbH8rQIy62UASAl0B32GK1XdeWfIixcoHYGK0bqAi9kbqxRxM-8CpDTWTlCb_v-0K6TKI83Zcx1K65MNTSQTg00Qq8G6Hmry3ET6E3q1AEBLRAd2Qqhv033Nfu6-33_0xHTANzqe113NrzUQKyKNGVBuV4OyWB98UjFVL5eRYyEaZqV8q-YAtaItJRqhJ60I2ooEIXvCsgD1DyNiz_XRU-mk_Sw-e_QZ-gO8DvRet9sofVmsfLPgUM19kUylkuQfhU2
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LLqgv3i-jq0YR8aWzbZqmjfgy7Lo76swIOouLICHJJCA7tjLTAfHXe056WVZWEd_a5gvkdtIvyTlfCHkmBfeJTpJIs0RH3MgiMqLg6GWeSmuc1xoDnKczMT7mb0-yky3yqouFafQh-g03tIwwX6OB44b03plqqC71kPEM46t28HwOzfLgw5l4lBRBiwAP2qIsSXmnKxSzvT7rub_RDjbsj4uo5nnmGn49h9fIl67QjcfJ6XBTm6H9-Zue4__W6jq52nJSOmoG0Q2y5cqb5NK0PXW_Rd7vV5iEN4wgrsbAKrp0uM9Gl5VevKSjkn79Fu47ohjPjy4_Kwp0mK7rVXXqKIwHeKk2NRTHrW-T48PX8_1x1F7EENlMZnHEgeMk3HG70E5Ib4DFJMDMihS6XziT2yx23hTCM-ZtGod1WGyE8AApgPGkd8h2WZXuHqGZ9cwsYNHIrOe5iLXRMnELJz3ktEYMyIuuQ5RtVcrxsoylavSVmYIGUqGBBuRpD_3eSHNcBHoeerVHQAugL1ueqU-zI5V-PPh8NJmnCoC7Xber1ozXCrhVHmYtKNeTPhkMEE9VdOmqDWIEzNRpIf6KyWGZyAohB-RuM6T6AjH4LoE_QM3DwPhzXdRoNgoP9_8d-phcHs-nEzV5M3v3gFwBupc1zji7ZLtebdxDoFS1eRQs5xfc7hlT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lheKL98tq1Sgivsx2JpPJTPRpad1WbVfRFosIIckkIF1nyu4siL_eczKXUqkivs1MvkBuJ_MlOecLIc-k4D7RSRJpluiIG1lERhQcvcxTaY3zWmOA8-FM7B_ztyfZyRp51cfCtPoQw4YbWkaYr9HAz0q_fS4aqis9ZjzD8KoNLmB1hYzo47l2lBRBigDP2aIsSXkvKxSz7SHrhZ_RBrbrj8uY5kXiGv4802vka1_m1uHkdLxqzNj-_E3O8T8rdZ1c7RgpnbRD6AZZc9VNsnnYnbnfIu93akzC-0UQ12BYFZ073GWj81qXL-mkot--h9uOKEbzo8PPggIZpstmUZ86CqMBXupVA6Vxy9vkePr6aGc_6q5hiGwmszjiwHAS7rgttRPSG-AwCfCyIoXOF87kNoudN4XwjHmbxmEVFhshPEAK4DvpHbJe1ZW7R2hmPTMlLBmZ9TwXsTZaJq500kNOa8SIvOj7Q9lOoxyvypirVl2ZKWggFRpoRJ4O0LNWmOMy0PPQqQMCWgA92fJMfZ7tqfTT7pe9g6NUAXCr73XVGfFSAbPKw5wF5XoyJIP54ZmKrly9QoyAeTotxF8xOSwSWSHkiNxtR9RQIAbfJbAHqHkYF3-ui5rMJuHh_r9DH5PND7tTdfBm9u4BuQJcL2s9cbbIerNYuYfApxrzKNjNL3uHGAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corticospinal+tract+lesion+load%3A+An+imaging+biomarker+for+stroke+motor+outcomes&rft.jtitle=Annals+of+neurology&rft.au=Feng%2C+Wuwei&rft.au=Wang%2C+Jasmine&rft.au=Chhatbar%2C+Pratik+Y&rft.au=Doughty%2C+Christopher&rft.date=2015-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=78&rft.issue=6&rft.spage=860&rft_id=info:doi/10.1002%2Fana.24510&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3922244271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon