Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes
Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two‐site prospective cohort study followed up a group...
Saved in:
Published in | Annals of neurology Vol. 78; no. 6; pp. 860 - 870 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0364-5134 1531-8249 1531-8249 |
DOI | 10.1002/ana.24510 |
Cover
Abstract | Objective
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.
Methods
A two‐site prospective cohort study followed up a group of first‐ever ischemic stroke patients using the Upper‐Extremity Fugl‐Meyer (UE‐FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST‐LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST‐LL and compared with initial motor impairment.
Results
Seventy‐six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST‐LL as well as assessment of motor impairment (UE‐FM) in the acute phase correlated with motor impairment (UE‐FM) at 3 months in both cohort 1 (R2 = 0.69 vs. R2 = 0.67; p = 0.43) and cohort 2 (R2 = 0.69 vs. R2 = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE‐FM ≤ 10 at baseline), wCST‐LL correlated with outcomes significantly better than clinical assessment (R2 = 0.47 vs. R2 = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE‐FM ≤ 25) when wCST‐LL was ≥ 7.0 cc (positive predictive value was 100%).
Interpretation
wCST‐LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860–870 |
---|---|
AbstractList | Objective
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.
Methods
A two‐site prospective cohort study followed up a group of first‐ever ischemic stroke patients using the Upper‐Extremity Fugl‐Meyer (UE‐FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST‐LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST‐LL and compared with initial motor impairment.
Results
Seventy‐six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST‐LL as well as assessment of motor impairment (UE‐FM) in the acute phase correlated with motor impairment (UE‐FM) at 3 months in both cohort 1 (R2 = 0.69 vs. R2 = 0.67; p = 0.43) and cohort 2 (R2 = 0.69 vs. R2 = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE‐FM ≤ 10 at baseline), wCST‐LL correlated with outcomes significantly better than clinical assessment (R2 = 0.47 vs. R2 = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE‐FM ≤ 25) when wCST‐LL was ≥ 7.0 cc (positive predictive value was 100%).
Interpretation
wCST‐LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860–870 Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Results Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R super(2)=0.69 vs. R super(2)=0.67; p=0.43) and cohort 2 (R super(2)=0.69 vs. R super(2)=0.62; p=0.25). In the severely impaired subgroup (defined as UE-FM less than or equal to 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R super(2)=0.47 vs. R super(2)=0.11; p=0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM less than or equal to 25) when wCST-LL was greater than or equal to 7.0 cc (positive predictive value was 100%). Interpretation wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015; 78:860-870 The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2) = 0.69 vs. R(2) = 0.67; p = 0.43) and cohort 2 (R(2) = 0.69 vs. R(2) = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2) = 0.47 vs. R(2) = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%). wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment. Methods A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment. Results Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R2=0.69 vs. R2=0.67; p=0.43) and cohort 2 (R2=0.69 vs. R2=0.62; p=0.25). In the severely impaired subgroup (defined as UE-FM≤10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R2=0.47 vs. R2=0.11; p=0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM≤25) when wCST-LL was≥7.0 cc (positive predictive value was 100%). Interpretation wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. Ann Neurol 2015;78:860-870 The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.OBJECTIVEThe aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months in comparison to clinical assessment of initial motor impairment.A two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment.METHODSA two-site prospective cohort study followed up a group of first-ever ischemic stroke patients using the Upper-Extremity Fugl-Meyer (UE-FM) Scale to measure motor impairment in the acute phase and at 3 months. A weighted CST lesion load (wCST-LL) was calculated by overlaying the patient's lesion map on magnetic resonance imaging with a probabilistic CST constructed from healthy control subjects. Regression models were fit to assess the predictive value of wCST-LL and compared with initial motor impairment.Seventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2) = 0.69 vs. R(2) = 0.67; p = 0.43) and cohort 2 (R(2) = 0.69 vs. R(2) = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2) = 0.47 vs. R(2) = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%).RESULTSSeventy-six patients (37 from cohort 1 and 39 from cohort 2) completed the study. wCST-LL as well as assessment of motor impairment (UE-FM) in the acute phase correlated with motor impairment (UE-FM) at 3 months in both cohort 1 (R(2) = 0.69 vs. R(2) = 0.67; p = 0.43) and cohort 2 (R(2) = 0.69 vs. R(2) = 0.62; p = 0.25). In the severely impaired subgroup (defined as UE-FM ≤ 10 at baseline), wCST-LL correlated with outcomes significantly better than clinical assessment (R(2) = 0.47 vs. R(2) = 0.11; p = 0.03). In the nonseverely impaired subgroup, stroke patients recovered approximately 70% of their maximal recovery potential. All stroke patients in both cohorts had poor motor outcomes at 3 months (defined as UE-FM ≤ 25) when wCST-LL was ≥ 7.0 cc (positive predictive value was 100%).wCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline.INTERPRETATIONwCST-LL, an imaging biomarker determined in the acute phase, can predict poststroke motor outcomes at 3 months, especially in patients with severe impairment at baseline. |
Author | Feng, Wuwei Doughty, Christopher Wang, Jasmine Kautz, Steven A. Schlaug, Gottfried Chhatbar, Pratik Y. Lioutas, Vasileios-Arsenios Landsittel, Douglas |
Author_xml | – sequence: 1 givenname: Wuwei surname: Feng fullname: Feng, Wuwei organization: Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC – sequence: 2 givenname: Jasmine surname: Wang fullname: Wang, Jasmine organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston – sequence: 3 givenname: Pratik Y. surname: Chhatbar fullname: Chhatbar, Pratik Y. organization: Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, SC, Charleston – sequence: 4 givenname: Christopher surname: Doughty fullname: Doughty, Christopher organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston – sequence: 5 givenname: Douglas surname: Landsittel fullname: Landsittel, Douglas organization: Section on Biomarkers and Prediction Modeling, Department of Medicine, University of Pittsburgh, PA, Pittsburgh – sequence: 6 givenname: Vasileios-Arsenios surname: Lioutas fullname: Lioutas, Vasileios-Arsenios organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston – sequence: 7 givenname: Steven A. surname: Kautz fullname: Kautz, Steven A. organization: Ralph H. Johnson VA Medical Center, Charleston, SC – sequence: 8 givenname: Gottfried surname: Schlaug fullname: Schlaug, Gottfried email: gschlaug@bidmc.harvard.edu organization: Neuroimaging & Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, Boston |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26289123$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9r2zAchkXpaJN2h32BIehlPbjVf9u9hazLBqE9tGOwi5CVn4ta20olma3ffsqS7FA22EkInvdFet4pOhz8AAi9o-SCEsIuzWAumJCUHKAJlZwWFRP1IZoQrkQhKRfHaBrjIyGkVpQcoWOmWFVTxifodu5DctbHtRtMh1MwNuEOovMD7rxZXeHZgF1vHtzwgBvnexOeIODWBxxT8E-Ae5_yxY_J-h7iKXrTmi7C2915gr5-ur6ffy6Wt4sv89mysLKWpBCs5FSAsCsDqm4bJTitJa24tUZBU1pJoG0q1TLWWp4fLlhFGqXajFSC1_wEfdj2roN_HiEm3btooevMAH6MmpalUvmX6n9QRapcq1RGz16hj34MWcyGkiXJiumGer-jxqaHlV6HLCi86L3VDFxuARt8jAFabV0yKTvNfl2nKdGb3XTeTf_eLSfOXyX2pX9jd-0_XAcv_wb17Ga2TxTbhIsJfv5J5Cm1Knkp9bebheZ3H78vlvdcE_4LHl6zLg |
CitedBy_id | crossref_primary_10_1007_s12975_016_0467_5 crossref_primary_10_1155_2016_7043767 crossref_primary_10_1177_15459683221115413 crossref_primary_10_1177_1545968316662708 crossref_primary_10_1111_cns_13799 crossref_primary_10_1002_hsr2_2221 crossref_primary_10_1097_NPT_0000000000000295 crossref_primary_10_1002_hbm_24338 crossref_primary_10_3389_fnhum_2017_00469 crossref_primary_10_1002_ana_24537 crossref_primary_10_1161_STROKEAHA_123_043897 crossref_primary_10_1177_1545968316680492 crossref_primary_10_1161_STROKEAHA_116_016478 crossref_primary_10_1002_hbm_25421 crossref_primary_10_3233_NRE_172412 crossref_primary_10_1055_a_1272_9435 crossref_primary_10_1002_ana_25080 crossref_primary_10_1016_j_neuropsychologia_2021_107980 crossref_primary_10_3389_fneur_2022_965856 crossref_primary_10_1136_bmjopen_2018_026435 crossref_primary_10_3174_ajnr_A6038 crossref_primary_10_1016_j_brs_2024_07_008 crossref_primary_10_1007_s11682_018_0006_y crossref_primary_10_1016_j_neucli_2018_10_065 crossref_primary_10_3174_ajnr_A5180 crossref_primary_10_1016_j_neucli_2016_01_003 crossref_primary_10_1161_STROKEAHA_116_015264 crossref_primary_10_1016_j_jneumeth_2022_109612 crossref_primary_10_1016_j_hest_2019_12_002 crossref_primary_10_1161_STROKEAHA_119_026205 crossref_primary_10_1161_STROKEAHA_119_024946 crossref_primary_10_3389_fncel_2018_00245 crossref_primary_10_1109_TBME_2020_3027853 crossref_primary_10_3389_fnins_2024_1400944 crossref_primary_10_12688_f1000research_8722_1 crossref_primary_10_1002_hbm_23829 crossref_primary_10_1177_1545968316688799 crossref_primary_10_1212_WNL_0000000000209387 crossref_primary_10_1016_j_nicl_2016_09_015 crossref_primary_10_3389_fnins_2023_1228645 crossref_primary_10_1093_brain_awaa156 crossref_primary_10_1093_braincomms_fcaf016 crossref_primary_10_1016_j_pmr_2023_06_003 crossref_primary_10_1038_s41598_018_27541_8 crossref_primary_10_1177_15459683231177607 crossref_primary_10_1177_15459683231177604 crossref_primary_10_3390_neurolint14040069 crossref_primary_10_38025_2078_1962_2023_22_4_31_40 crossref_primary_10_1016_j_arrct_2020_100075 crossref_primary_10_3389_fneur_2021_634065 crossref_primary_10_1007_s00115_017_0369_0 crossref_primary_10_1109_TNSRE_2019_2924742 crossref_primary_10_3390_brainsci6040053 crossref_primary_10_1016_j_nicl_2022_103132 crossref_primary_10_3389_fneur_2018_00737 crossref_primary_10_3389_fneur_2019_00445 crossref_primary_10_1093_brain_awaa146 crossref_primary_10_1155_2022_7790730 crossref_primary_10_1007_s10072_020_04350_4 crossref_primary_10_1212_WNL_0000000000213408 crossref_primary_10_1523_JNEUROSCI_1311_23_2024 crossref_primary_10_3389_fneur_2020_00015 crossref_primary_10_1016_j_clinph_2019_04_711 crossref_primary_10_1161_STROKEAHA_115_012088 crossref_primary_10_1007_s00330_017_4868_y crossref_primary_10_1093_brain_awz181 crossref_primary_10_1002_pri_1937 crossref_primary_10_1038_s41597_022_01401_7 crossref_primary_10_3389_fneur_2022_804133 crossref_primary_10_1177_1545968320921824 crossref_primary_10_1002_ana_24735 crossref_primary_10_1093_braincomms_fcac241 crossref_primary_10_1002_hbm_25629 crossref_primary_10_1212_WNL_0000000000200034 crossref_primary_10_1371_journal_pone_0189279 crossref_primary_10_1093_braincomms_fcab034 crossref_primary_10_3389_fnimg_2022_1098604 crossref_primary_10_1016_j_nicl_2019_102065 crossref_primary_10_3390_jcm9040975 crossref_primary_10_1111_ene_14494 crossref_primary_10_1016_j_nicl_2017_01_023 crossref_primary_10_1177_1545968317751210 crossref_primary_10_1038_s41598_019_56334_w crossref_primary_10_3390_s23125398 crossref_primary_10_1136_jnnp_2021_327211 crossref_primary_10_3238_PersNeuro_2024_08_09_04 crossref_primary_10_1177_1545968320948610 crossref_primary_10_1111_ene_13296 crossref_primary_10_1155_2020_8883839 crossref_primary_10_1177_1545968317753074 crossref_primary_10_3389_fnins_2023_1241772 crossref_primary_10_1161_STROKEAHA_115_011576 crossref_primary_10_1016_j_clinph_2025_01_010 crossref_primary_10_4103_jcsr_jcsr_16_23 crossref_primary_10_3390_molecules26175173 crossref_primary_10_1044_2019_JSLHR_L_RSNP_19_0032 crossref_primary_10_3390_jcm12072601 crossref_primary_10_1093_brain_awy302 crossref_primary_10_1161_STROKEAHA_118_020814 crossref_primary_10_1016_j_clinph_2019_04_004 crossref_primary_10_1080_02699052_2024_2422382 crossref_primary_10_1016_j_jns_2020_117130 crossref_primary_10_1161_STROKEAHA_123_043159 crossref_primary_10_1177_15459683221078294 crossref_primary_10_1038_srep23271 crossref_primary_10_1093_brain_awac010 crossref_primary_10_1016_j_jocn_2016_01_034 crossref_primary_10_1212_WNL_0000000000207219 crossref_primary_10_1007_s11910_019_0919_x crossref_primary_10_1152_jn_00715_2017 crossref_primary_10_1002_jnr_24525 crossref_primary_10_1088_1741_2552_adbebf crossref_primary_10_1007_s00234_017_1816_0 crossref_primary_10_1016_j_jneumeth_2018_04_010 crossref_primary_10_1177_15459683211070278 crossref_primary_10_1155_2018_9853837 crossref_primary_10_1016_j_nicl_2022_103174 crossref_primary_10_1155_2019_9471921 crossref_primary_10_1152_jn_00561_2019 crossref_primary_10_1161_STROKEAHA_119_025696 crossref_primary_10_1177_1545968318787060 crossref_primary_10_2490_jjrmc_61_96 crossref_primary_10_3233_NRE_172395 crossref_primary_10_3233_NRE_172393 crossref_primary_10_1002_jmri_27911 crossref_primary_10_1136_svn_2017_000069 crossref_primary_10_1159_000477500 crossref_primary_10_1212_WNL_0000000000200517 crossref_primary_10_1016_j_pmrj_2018_04_012 crossref_primary_10_1159_000444149 crossref_primary_10_1177_11795735241266601 crossref_primary_10_1016_j_neulet_2019_03_005 crossref_primary_10_1097_WCO_0000000000000462 crossref_primary_10_1177_1479164116675491 crossref_primary_10_1177_1545968320932135 crossref_primary_10_1177_00315125231189339 crossref_primary_10_1002_acn3_488 crossref_primary_10_1177_15459683211054178 crossref_primary_10_1161_STROKEAHA_119_027700 crossref_primary_10_1016_j_neurom_2023_02_077 crossref_primary_10_1161_STROKEAHA_116_015790 crossref_primary_10_1161_STROKEAHA_120_028932 crossref_primary_10_3389_fneur_2019_00072 crossref_primary_10_1186_s12984_025_01568_1 crossref_primary_10_1177_15459683231173668 crossref_primary_10_1088_1741_2552_ad8961 crossref_primary_10_1016_j_clineuro_2022_107267 crossref_primary_10_1007_s10548_022_00937_6 crossref_primary_10_1080_08098131_2020_1795704 crossref_primary_10_1177_1545968319872996 crossref_primary_10_1016_j_mri_2022_06_001 crossref_primary_10_1017_cjn_2020_112 crossref_primary_10_3390_jpm12010081 crossref_primary_10_1177_1545968320975437 crossref_primary_10_1161_STROKEAHA_117_020607 crossref_primary_10_1016_j_neuroscience_2024_12_016 crossref_primary_10_1177_1545968316662528 crossref_primary_10_1177_0963689719837919 crossref_primary_10_1177_1545968319868718 crossref_primary_10_1038_s41598_018_29751_6 crossref_primary_10_1186_s12984_020_00747_6 crossref_primary_10_2490_prm_20240001 crossref_primary_10_1016_j_apmr_2024_06_022 crossref_primary_10_3389_fneur_2023_1323529 crossref_primary_10_3389_fnins_2018_00994 crossref_primary_10_1177_1545968319868714 crossref_primary_10_3390_brainsci13030412 crossref_primary_10_1161_STROKEAHA_118_021426 crossref_primary_10_1038_s41598_024_70083_5 crossref_primary_10_1002_ana_25265 crossref_primary_10_1002_ana_25386 crossref_primary_10_1097_MD_0000000000004534 crossref_primary_10_1016_j_nicl_2021_102935 crossref_primary_10_1038_s41746_020_00328_w crossref_primary_10_1093_brain_awab082 crossref_primary_10_1016_j_nicl_2017_01_009 crossref_primary_10_1097_WCO_0000000000001085 crossref_primary_10_2490_jjrmc_60_1111 crossref_primary_10_1515_revneuro_2019_0047 crossref_primary_10_2490_prm_20210050 crossref_primary_10_1161_STROKEAHA_118_021319 crossref_primary_10_1161_STROKEAHA_119_025898 crossref_primary_10_1056_NEJMra1706158 crossref_primary_10_1155_2022_4203698 crossref_primary_10_1007_s00415_020_10143_8 crossref_primary_10_1007_s00429_023_02630_1 crossref_primary_10_1113_JP281311 crossref_primary_10_1177_0271678X20903697 crossref_primary_10_1177_15459683211028240 crossref_primary_10_1038_s41598_023_38749_8 crossref_primary_10_1016_S1474_4422_17_30283_1 crossref_primary_10_1186_s12984_024_01513_8 crossref_primary_10_1136_neurintsurg_2020_016834 crossref_primary_10_1212_WNL_0000000000012366 crossref_primary_10_1186_s12984_023_01153_4 crossref_primary_10_1016_j_nicl_2018_10_003 crossref_primary_10_3389_fneur_2019_00836 crossref_primary_10_1016_j_neuroimage_2024_120828 crossref_primary_10_1007_s12975_017_0551_5 crossref_primary_10_1016_j_neuroimage_2018_08_002 crossref_primary_10_1093_braincomms_fcad055 crossref_primary_10_1002_hbm_25583 crossref_primary_10_1007_s00429_016_1325_7 crossref_primary_10_1136_bmjopen_2020_037391 crossref_primary_10_1016_j_nicl_2021_102639 crossref_primary_10_1177_1747493017714176 crossref_primary_10_3389_fnins_2024_1509850 crossref_primary_10_1016_j_neurom_2024_07_010 crossref_primary_10_1177_0271678X19875212 crossref_primary_10_3390_jpm11111162 crossref_primary_10_14814_phy2_15659 crossref_primary_10_1002_acn3_278 crossref_primary_10_3389_fneur_2022_854915 crossref_primary_10_1002_hbm_25338 crossref_primary_10_1177_15459683231152816 crossref_primary_10_1002_ana_25679 crossref_primary_10_1136_jnnp_2020_324637 crossref_primary_10_12680_balneo_2019_263 crossref_primary_10_1002_hbm_26105 crossref_primary_10_1002_hbm_25015 crossref_primary_10_1007_s10072_021_05600_9 crossref_primary_10_1007_s11910_023_01319_6 crossref_primary_10_3389_fnhum_2022_887849 crossref_primary_10_1161_STROKEAHA_117_018844 crossref_primary_10_1016_j_nicl_2022_103103 crossref_primary_10_1161_STROKEAHA_118_023006 crossref_primary_10_1177_1545968320935820 crossref_primary_10_1016_j_clinph_2023_12_064 crossref_primary_10_4103_1673_5374_297060 crossref_primary_10_1002_acn3_51292 crossref_primary_10_1177_1545968317740634 crossref_primary_10_3389_fneur_2022_878638 crossref_primary_10_1007_s12975_017_0550_6 crossref_primary_10_1161_STROKEAHA_116_016020 crossref_primary_10_1002_ana_25206 crossref_primary_10_1007_s12975_022_01115_3 crossref_primary_10_1111_cns_13946 crossref_primary_10_1111_nyas_13726 crossref_primary_10_12688_f1000research_135245_1 crossref_primary_10_1177_1545968317732680 crossref_primary_10_3389_fcell_2022_1062807 crossref_primary_10_1177_1545968318785044 crossref_primary_10_3233_RNN_170747 crossref_primary_10_3389_fnins_2024_1348103 crossref_primary_10_1093_brain_awab439 crossref_primary_10_1002_hbm_23059 crossref_primary_10_3389_fneur_2017_00029 crossref_primary_10_3390_jcm12216734 crossref_primary_10_1016_j_bbr_2016_08_029 crossref_primary_10_1093_braincomms_fcae254 crossref_primary_10_3390_jcm12237413 |
Cites_doi | 10.1093/brain/aws115 10.1002/hbm.21266 10.1016/S1388-2457(03)00252-9 10.1093/brain/aws146 10.1177/1545968314562115 10.1161/STROKEAHA.109.577023 10.1161/01.STR.0000258077.88064.a3 10.1161/hs0102.101224 10.1093/cercor/bhr047 10.1161/01.STR.0000068410.07397.D7 10.2340/1650197771331 10.1155/2000/421719 10.1093/brain/awl002 10.1002/ana.21636 10.1161/01.STR.24.1.35 10.1161/STROKEAHA.109.572065 10.1016/j.mehy.2005.05.017 10.1038/nn1699 10.3174/ajnr.A2400 10.1177/1545968307305302 10.1016/S1474-4422(10)70314-8 10.1053/mr.2000.3837 10.1111/j.1468-1331.2011.03615.x 10.1161/01.STR.25.11.2183 10.1161/01.STR.25.11.2220 10.1161/01.STR.29.9.1854 10.1016/0924-980X(96)95656-8 10.1161/01.STR.23.8.1084 10.1186/1741-7015-8-60 10.1093/brain/awl333 10.1002/jmri.22315 10.1093/ptj/63.10.1606 |
ContentType | Journal Article |
Copyright | 2015 American Neurological Association 2015 American Neurological Association. |
Copyright_xml | – notice: 2015 American Neurological Association – notice: 2015 American Neurological Association. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
DOI | 10.1002/ana.24510 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 870 |
ExternalDocumentID | 3922244271 26289123 10_1002_ana_24510 ANA24510 ark_67375_WNG_3SDZGLT3_0 |
Genre | article Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Richard and Rosalyn Slifka Family Fund – fundername: Tom and Suzanne McManmon Family Fund – fundername: National Institutes of Health (NIH) funderid: UL1 RR029882 ; UL1 TR000062 ; NIH P20GM109040 – fundername: Rehabilitation Research & Development Service of the Department of Veterans Affairs funderid: NIH 1R01 DC008796 ; R01 DC009823‐01 – fundername: Mary Crown and William Ellis Fund – fundername: South Carolina Clinical & Translational Research Institute/Medical University of South Carolina – fundername: American Heart Association Scientist Development Grant funderid: 14SDG1829003 – fundername: Doris Duke Charitable Foundation – fundername: NIDCD NIH HHS grantid: R01 DC009823 – fundername: NIGMS NIH HHS grantid: P20 GM109040 – fundername: NIDCD NIH HHS grantid: 1R01 DC008796 – fundername: NIDCD NIH HHS grantid: R01 DC008796 – fundername: NIGMS NIH HHS grantid: P20GM109040 – fundername: NCATS NIH HHS grantid: UL1 TR000062 – fundername: NIDCD NIH HHS grantid: R01 DC009823-01 – fundername: NCRR NIH HHS grantid: UL1 RR029882 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION ACRZS CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
ID | FETCH-LOGICAL-c5950-427314e4cdae69fb643195183cca6eb7c50efb86f22fc30004280b66f18384393 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Fri Sep 05 08:23:12 EDT 2025 Thu Sep 04 17:05:49 EDT 2025 Fri Jul 25 12:21:09 EDT 2025 Thu Apr 03 07:00:10 EDT 2025 Tue Jul 01 02:24:06 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Sun Sep 21 06:20:08 EDT 2025 Sun Sep 21 06:18:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 American Neurological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5950-427314e4cdae69fb643195183cca6eb7c50efb86f22fc30004280b66f18384393 |
Notes | Mary Crown and William Ellis Fund American Heart Association Scientist Development Grant - No. 14SDG1829003 Richard and Rosalyn Slifka Family Fund Doris Duke Charitable Foundation Tom and Suzanne McManmon Family Fund South Carolina Clinical & Translational Research Institute/Medical University of South Carolina National Institutes of Health (NIH) - No. UL1 RR029882; No. UL1 TR000062; No. NIH P20GM109040 Rehabilitation Research & Development Service of the Department of Veterans Affairs - No. NIH 1R01 DC008796; No. R01 DC009823-01 istex:9F824F4EE13D96C6BFF3B8A68BF8294BDF9E3600 ark:/67375/WNG-3SDZGLT3-0 ArticleID:ANA24510 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4715758 |
PMID | 26289123 |
PQID | 1757051016 |
PQPubID | 946345 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1776662869 proquest_miscellaneous_1760883866 proquest_journals_1757051016 pubmed_primary_26289123 crossref_citationtrail_10_1002_ana_24510 crossref_primary_10_1002_ana_24510 wiley_primary_10_1002_ana_24510_ANA24510 istex_primary_ark_67375_WNG_3SDZGLT3_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Minneapolis |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Smania N, Paolucci S, Tinazzi M, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007;38:1088-1090. Puig J, Pedraza S, Blasco G, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol 2011;32:857-863. Mak W, Cheng TS, Chan KH, Cheung RT, Ho SL. A possible explanation for the racial difference in distribution of large-arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries. Med Hypotheses 2005;65:637-648. Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G; EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 2010;41:745-750. Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile AM, Wolfe CD, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in europe: Data from a multicenter multinational hospital-based registry. Stroke 2003;34:1114-1119. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand J Rehabil Med 1975;7:13-31. Mark VW, Taub E, Perkins C, Gauthier L, Uswatte G. MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis. Restor Neurol Neurosci 2008;26:13-33. Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 2012;33:1040-1051. Chen CL, Tang FT, Chen HC, Chung CY, Wong MK. Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil 2000;81:447-452. Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191-200. Marshall RS, Zarahn E, Alon L, et al. Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 2009;65:596-602. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 2015;29:614-622. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992;23:1084-1089. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29:1854-1859. Bagg S, Pombo AP, Hopman W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002;33:179-185. Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9:735-737. Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med 2010;8:60. Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994;25:2220-2226. Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies. Eur J Neurol 2012;19:718-724. Adams HP, Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35-41. Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 2011;21:2712-2721. Ward NS, Newton JM, Swayne OB, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006;129:809-819. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983;63:1606-1610. Seitz RJ, Donnan GA. Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 2010;32:756-772. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain 2012;135:2527-2535. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135(pt 7):2277-2289. Catano A, Houa M, Caroyer JM, Ducarne H, Noel P. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 1996;101:233-239. Zhu LL, Lindenberg R, Alexander MP, Schlaug G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 2010;41:910-915. Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 2008;22:64-71. Arac N, Sagduyu A, Binai S, Ertekin C. Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke 1994;25:2183-2186. Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130:170-180. Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011;10:123-130. Dachy B, Biltiau E, Bouillot E, Dan B, Deltenre P. Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations. Clin Neurophysiol 2003;114:2370-2375. 1998; 29 2010; 32 1993; 24 2009; 65 2006; 9 2002; 33 1994; 25 2005; 65 2011; 32 2012; 19 2011; 10 2003; 114 1996; 101 2012; 33 2010; 41 2003; 34 2007; 38 2015; 29 2012; 135 2000; 12 2007; 130 2008; 26 2000; 81 2011; 21 1983; 63 2008; 22 1975; 7 2006; 129 1992; 23 2010; 8 Mark VW (e_1_2_8_28_1) 2008; 26 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 Carlo A (e_1_2_8_3_1) 2003; 34 e_1_2_8_17_1 e_1_2_8_18_1 Fugl‐Meyer AR (e_1_2_8_23_1) 1975; 7 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7 20942915 - BMC Med. 2010;8:60 9731608 - Stroke. 1998 Sep;29(9):1854-9 21527788 - Cereb Cortex. 2011 Dec;21(12):2712-21 7974549 - Stroke. 1994 Nov;25(11):2220-6 21216670 - Lancet Neurol. 2011 Feb;10(2):123-30 19479972 - Ann Neurol. 2009 May;65(5):596-602 11568431 - Behav Neurol. 2000;12(4):191-200 20882606 - J Magn Reson Imaging. 2010 Oct;32(4):756-72 20167916 - Stroke. 2010 Apr;41(4):745-50 10768534 - Arch Phys Med Rehabil. 2000 Apr;81(4):447-52 7974543 - Stroke. 1994 Nov;25(11):2183-6 16006051 - Med Hypotheses. 2005;65(4):637-48 8647036 - Electroencephalogr Clin Neurophysiol. 1996 Jun;101(3):233-9 14652097 - Clin Neurophysiol. 2003 Dec;114(12):2370-5 22221491 - Eur J Neurol. 2012 May;19(5):718-24 1135616 - Scand J Rehabil Med. 1975;7(1):13-31 12690218 - Stroke. 2003 May;34(5):1114-9 22689909 - Brain. 2012 Aug;135(Pt 8):2527-35 16421171 - Brain. 2006 Mar;129(Pt 3):809-19 20378864 - Stroke. 2010 May;41(5):910-5 26435166 - Ann Neurol. 2015 Dec;78(6):845-7 17148468 - Brain. 2007 Jan;130(Pt 1):170-80 25505223 - Neurorehabil Neural Repair. 2015 Aug;29(7):614-22 6622535 - Phys Ther. 1983 Oct;63(10):1606-10 11779908 - Stroke. 2002 Jan;33(1):179-85 21474629 - AJNR Am J Neuroradiol. 2011 May;32(5):857-63 18431003 - Restor Neurol Neurosci. 2008;26(1):13-33 22581799 - Brain. 2012 Jul;135(Pt 7):2277-89 7678184 - Stroke. 1993 Jan;24(1):35-41 1636182 - Stroke. 1992 Aug;23(8):1084-9 17255546 - Stroke. 2007 Mar;38(3):1088-90 17687024 - Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):64-71 21538700 - Hum Brain Mapp. 2012 May;33(5):1040-51 |
References_xml | – reference: Bagg S, Pombo AP, Hopman W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002;33:179-185. – reference: Cooke EV, Mares K, Clark A, Tallis RC, Pomeroy VM. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med 2010;8:60. – reference: Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G; EPOS Investigators. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 2010;41:745-750. – reference: Smania N, Paolucci S, Tinazzi M, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007;38:1088-1090. – reference: Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130:170-180. – reference: Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. Stroke 1994;25:2220-2226. – reference: Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies. Eur J Neurol 2012;19:718-724. – reference: Puig J, Pedraza S, Blasco G, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol 2011;32:857-863. – reference: Ward NS, Newton JM, Swayne OB, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006;129:809-819. – reference: Chen CL, Tang FT, Chen HC, Chung CY, Wong MK. Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil 2000;81:447-452. – reference: Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011;10:123-130. – reference: Adams HP, Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35-41. – reference: Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9:735-737. – reference: Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 2012;33:1040-1051. – reference: Di Carlo A, Lamassa M, Baldereschi M, Pracucci G, Basile AM, Wolfe CD, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in europe: Data from a multicenter multinational hospital-based registry. Stroke 2003;34:1114-1119. – reference: Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 1992;23:1084-1089. – reference: Zhu LL, Lindenberg R, Alexander MP, Schlaug G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 2010;41:910-915. – reference: Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol 2000;12:191-200. – reference: Mark VW, Taub E, Perkins C, Gauthier L, Uswatte G. MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis. Restor Neurol Neurosci 2008;26:13-33. – reference: Dachy B, Biltiau E, Bouillot E, Dan B, Deltenre P. Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations. Clin Neurophysiol 2003;114:2370-2375. – reference: Arac N, Sagduyu A, Binai S, Ertekin C. Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke 1994;25:2183-2186. – reference: Marshall RS, Zarahn E, Alon L, et al. Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 2009;65:596-602. – reference: Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135(pt 7):2277-2289. – reference: Mak W, Cheng TS, Chan KH, Cheung RT, Ho SL. A possible explanation for the racial difference in distribution of large-arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries. Med Hypotheses 2005;65:637-648. – reference: Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 2015;29:614-622. – reference: Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983;63:1606-1610. – reference: Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The prep algorithm predicts potential for upper limb recovery after stroke. Brain 2012;135:2527-2535. – reference: Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 2011;21:2712-2721. – reference: Seitz RJ, Donnan GA. Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 2010;32:756-772. – reference: Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand J Rehabil Med 1975;7:13-31. – reference: Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29:1854-1859. – reference: Prabhakaran S, Zarahn E, Riley C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair 2008;22:64-71. – reference: Catano A, Houa M, Caroyer JM, Ducarne H, Noel P. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 1996;101:233-239. – volume: 8 start-page: 60 year: 2010 article-title: The effects of increased dose of exercise‐based therapies to enhance motor recovery after stroke: a systematic review and meta‐analysis publication-title: BMC Med – volume: 12 start-page: 191 year: 2000 end-page: 200 article-title: Stereotaxic display of brain lesions publication-title: Behav Neurol – volume: 135 start-page: 2277 issue: pt 7 year: 2012 end-page: 2289 article-title: Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey publication-title: Brain – volume: 26 start-page: 13 year: 2008 end-page: 33 article-title: MRI infarction load and CI therapy outcomes for chronic post‐stroke hemiparesis publication-title: Restor Neurol Neurosci – volume: 129 start-page: 809 year: 2006 end-page: 819 article-title: Motor system activation after subcortical stroke depends on corticospinal system integrity publication-title: Brain – volume: 41 start-page: 745 year: 2010 end-page: 750 article-title: Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: Early prediction of functional outcome after stroke: the EPOS cohort study publication-title: Stroke – volume: 21 start-page: 2712 year: 2011 end-page: 2721 article-title: Prediction of motor recovery using initial impairment and fMRI 48 h poststroke publication-title: Cereb Cortex – volume: 22 start-page: 64 year: 2008 end-page: 71 article-title: Inter‐individual variability in the capacity for motor recovery after ischemic stroke publication-title: Neurorehabil Neural Repair – volume: 29 start-page: 614 year: 2015 end-page: 622 article-title: Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke publication-title: Neurorehabil Neural Repair – volume: 101 start-page: 233 year: 1996 end-page: 239 article-title: Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis publication-title: Electroencephalogr Clin Neurophysiol – volume: 63 start-page: 1606 year: 1983 end-page: 1610 article-title: Reliability of the Fugl‐Meyer assessment of sensorimotor recovery following cerebrovascular accident publication-title: Phys Ther – volume: 33 start-page: 1040 year: 2012 end-page: 1051 article-title: Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging publication-title: Hum Brain Mapp – volume: 130 start-page: 170 year: 2007 end-page: 180 article-title: Functional potential in chronic stroke patients depends on corticospinal tract integrity publication-title: Brain – volume: 135 start-page: 2527 year: 2012 end-page: 2535 article-title: The prep algorithm predicts potential for upper limb recovery after stroke publication-title: Brain – volume: 32 start-page: 756 year: 2010 end-page: 772 article-title: Role of neuroimaging in promoting long‐term recovery from ischemic stroke publication-title: J Magn Reson Imaging – volume: 34 start-page: 1114 year: 2003 end-page: 1119 article-title: Sex differences in the clinical presentation, resource use, and 3‐month outcome of acute stroke in europe: Data from a multicenter multinational hospital‐based registry publication-title: Stroke – volume: 38 start-page: 1088 year: 2007 end-page: 1090 article-title: Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke publication-title: Stroke – volume: 65 start-page: 637 year: 2005 end-page: 648 article-title: A possible explanation for the racial difference in distribution of large‐arterial cerebrovascular disease: ancestral european settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries publication-title: Med Hypotheses – volume: 9 start-page: 735 year: 2006 end-page: 737 article-title: BDNF val66met polymorphism is associated with modified experience‐dependent plasticity in human motor cortex publication-title: Nat Neurosci – volume: 25 start-page: 2220 year: 1994 end-page: 2226 article-title: Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group publication-title: Stroke – volume: 10 start-page: 123 year: 2011 end-page: 130 article-title: Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo‐controlled trial publication-title: Lancet Neurol – volume: 65 start-page: 596 year: 2009 end-page: 602 article-title: Early imaging correlates of subsequent motor recovery after stroke publication-title: Ann Neurol – volume: 114 start-page: 2370 year: 2003 end-page: 2375 article-title: Facilitation of motor evoked potentials in ischemic stroke patients: prognostic value and neurophysiologic correlations publication-title: Clin Neurophysiol – volume: 32 start-page: 857 year: 2011 end-page: 863 article-title: Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke publication-title: AJNR Am J Neuroradiol – volume: 19 start-page: 718 year: 2012 end-page: 724 article-title: Correlation between genetic polymorphisms and stroke recovery: Analysis of the gain americas and gain international studies publication-title: Eur J Neurol – volume: 24 start-page: 35 year: 1993 end-page: 41 article-title: Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment publication-title: Stroke – volume: 23 start-page: 1084 year: 1992 end-page: 1089 article-title: Measurement of motor recovery after stroke. Outcome assessment and sample size requirements publication-title: Stroke – volume: 81 start-page: 447 year: 2000 end-page: 452 article-title: Brain lesion size and location: effects on motor recovery and functional outcome in stroke patients publication-title: Arch Phys Med Rehabil – volume: 29 start-page: 1854 year: 1998 end-page: 1859 article-title: Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke publication-title: Stroke – volume: 7 start-page: 13 year: 1975 end-page: 31 article-title: The post‐stroke hemiplegic patient: a method for evaluation of physical performance publication-title: Scand J Rehabil Med – volume: 41 start-page: 910 year: 2010 end-page: 915 article-title: Lesion load of the corticospinal tract predicts motor impairment in chronic stroke publication-title: Stroke – volume: 33 start-page: 179 year: 2002 end-page: 185 article-title: Effect of age on functional outcomes after stroke rehabilitation publication-title: Stroke – volume: 25 start-page: 2183 year: 1994 end-page: 2186 article-title: Prognostic value of transcranial magnetic stimulation in acute stroke publication-title: Stroke – ident: e_1_2_8_34_1 doi: 10.1093/brain/aws115 – ident: e_1_2_8_33_1 doi: 10.1002/hbm.21266 – ident: e_1_2_8_16_1 doi: 10.1016/S1388-2457(03)00252-9 – ident: e_1_2_8_29_1 doi: 10.1093/brain/aws146 – ident: e_1_2_8_27_1 doi: 10.1177/1545968314562115 – ident: e_1_2_8_12_1 doi: 10.1161/STROKEAHA.109.577023 – ident: e_1_2_8_7_1 doi: 10.1161/01.STR.0000258077.88064.a3 – ident: e_1_2_8_2_1 doi: 10.1161/hs0102.101224 – ident: e_1_2_8_14_1 doi: 10.1093/cercor/bhr047 – volume: 34 start-page: 1114 year: 2003 ident: e_1_2_8_3_1 article-title: Sex differences in the clinical presentation, resource use, and 3‐month outcome of acute stroke in europe: Data from a multicenter multinational hospital‐based registry publication-title: Stroke doi: 10.1161/01.STR.0000068410.07397.D7 – volume: 7 start-page: 13 year: 1975 ident: e_1_2_8_23_1 article-title: The post‐stroke hemiplegic patient: a method for evaluation of physical performance publication-title: Scand J Rehabil Med doi: 10.2340/1650197771331 – ident: e_1_2_8_26_1 doi: 10.1155/2000/421719 – ident: e_1_2_8_20_1 doi: 10.1093/brain/awl002 – ident: e_1_2_8_21_1 doi: 10.1002/ana.21636 – ident: e_1_2_8_22_1 doi: 10.1161/01.STR.24.1.35 – ident: e_1_2_8_5_1 doi: 10.1161/STROKEAHA.109.572065 – ident: e_1_2_8_8_1 doi: 10.1016/j.mehy.2005.05.017 – ident: e_1_2_8_30_1 doi: 10.1038/nn1699 – ident: e_1_2_8_10_1 doi: 10.3174/ajnr.A2400 – ident: e_1_2_8_13_1 doi: 10.1177/1545968307305302 – ident: e_1_2_8_32_1 doi: 10.1016/S1474-4422(10)70314-8 – ident: e_1_2_8_9_1 doi: 10.1053/mr.2000.3837 – ident: e_1_2_8_31_1 doi: 10.1111/j.1468-1331.2011.03615.x – volume: 26 start-page: 13 year: 2008 ident: e_1_2_8_28_1 article-title: MRI infarction load and CI therapy outcomes for chronic post‐stroke hemiparesis publication-title: Restor Neurol Neurosci – ident: e_1_2_8_17_1 doi: 10.1161/01.STR.25.11.2183 – ident: e_1_2_8_25_1 doi: 10.1161/01.STR.25.11.2220 – ident: e_1_2_8_15_1 doi: 10.1161/01.STR.29.9.1854 – ident: e_1_2_8_18_1 doi: 10.1016/0924-980X(96)95656-8 – ident: e_1_2_8_6_1 doi: 10.1161/01.STR.23.8.1084 – ident: e_1_2_8_4_1 doi: 10.1186/1741-7015-8-60 – ident: e_1_2_8_11_1 doi: 10.1093/brain/awl333 – ident: e_1_2_8_19_1 doi: 10.1002/jmri.22315 – ident: e_1_2_8_24_1 doi: 10.1093/ptj/63.10.1606 – reference: 25505223 - Neurorehabil Neural Repair. 2015 Aug;29(7):614-22 – reference: 14652097 - Clin Neurophysiol. 2003 Dec;114(12):2370-5 – reference: 18431003 - Restor Neurol Neurosci. 2008;26(1):13-33 – reference: 22221491 - Eur J Neurol. 2012 May;19(5):718-24 – reference: 22689909 - Brain. 2012 Aug;135(Pt 8):2527-35 – reference: 21216670 - Lancet Neurol. 2011 Feb;10(2):123-30 – reference: 19479972 - Ann Neurol. 2009 May;65(5):596-602 – reference: 6622535 - Phys Ther. 1983 Oct;63(10):1606-10 – reference: 9731608 - Stroke. 1998 Sep;29(9):1854-9 – reference: 20882606 - J Magn Reson Imaging. 2010 Oct;32(4):756-72 – reference: 12690218 - Stroke. 2003 May;34(5):1114-9 – reference: 1636182 - Stroke. 1992 Aug;23(8):1084-9 – reference: 17255546 - Stroke. 2007 Mar;38(3):1088-90 – reference: 21474629 - AJNR Am J Neuroradiol. 2011 May;32(5):857-63 – reference: 20167916 - Stroke. 2010 Apr;41(4):745-50 – reference: 7974549 - Stroke. 1994 Nov;25(11):2220-6 – reference: 10768534 - Arch Phys Med Rehabil. 2000 Apr;81(4):447-52 – reference: 20378864 - Stroke. 2010 May;41(5):910-5 – reference: 7678184 - Stroke. 1993 Jan;24(1):35-41 – reference: 17687024 - Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):64-71 – reference: 17148468 - Brain. 2007 Jan;130(Pt 1):170-80 – reference: 22581799 - Brain. 2012 Jul;135(Pt 7):2277-89 – reference: 21538700 - Hum Brain Mapp. 2012 May;33(5):1040-51 – reference: 11568431 - Behav Neurol. 2000;12(4):191-200 – reference: 21527788 - Cereb Cortex. 2011 Dec;21(12):2712-21 – reference: 16421171 - Brain. 2006 Mar;129(Pt 3):809-19 – reference: 16006051 - Med Hypotheses. 2005;65(4):637-48 – reference: 11779908 - Stroke. 2002 Jan;33(1):179-85 – reference: 20942915 - BMC Med. 2010;8:60 – reference: 8647036 - Electroencephalogr Clin Neurophysiol. 1996 Jun;101(3):233-9 – reference: 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7 – reference: 7974543 - Stroke. 1994 Nov;25(11):2183-6 – reference: 1135616 - Scand J Rehabil Med. 1975;7(1):13-31 – reference: 26435166 - Ann Neurol. 2015 Dec;78(6):845-7 |
SSID | ssj0009610 |
Score | 2.603264 |
Snippet | Objective
The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome... The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome at 3 months... Objective The aim of this work was to investigate whether an imaging measure of corticospinal tract (CST) injury in the acute phase can predict motor outcome... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 860 |
SubjectTerms | Adult Aged Biomarkers Brain Ischemia - pathology Brain Ischemia - physiopathology Female Follow-Up Studies Humans Magnetic Resonance Imaging - methods Male Middle Aged Outcome Assessment (Health Care) - methods Prognosis Pyramidal Tracts - pathology Pyramidal Tracts - physiopathology Recovery of Function - physiology Severity of Illness Index Stroke Stroke - diagnosis Stroke - pathology Stroke - physiopathology Time Factors Upper Extremity - physiopathology |
Title | Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes |
URI | https://api.istex.fr/ark:/67375/WNG-3SDZGLT3-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.24510 https://www.ncbi.nlm.nih.gov/pubmed/26289123 https://www.proquest.com/docview/1757051016 https://www.proquest.com/docview/1760883866 https://www.proquest.com/docview/1776662869 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lgvhivbu1ShQRX2Y7uc5En5bWtohdQVssIoQkm4B0O1N2Z0H663uSuZRKFfFtZvIFcjuZL8k5XxB6rSQPxBCSGUpMxq0qMytLHr3MmXLWB2NigPPhVB4c848n4mQNve9jYVp9iGHDLVpGmq-jgRu73L4SDTWVGVMuUngVYTLq5u9-uZKOUjIpEcRjtkwQxntVoZxuDzmv_YtuxWb9dRPRvM5b049nbwP96Ivc-pucjleNHbuL39Qc_7NO99DdjpDiSTuC7qM1Xz1Atw-7I_eH6PNOHZPi9SIR18SoKjz3cZMNz2sze4cnFf55li47wjGYP_r7LDBwYbxsFvWpxzAY4KVeNVAav3yEjvc-HO0cZN0tDJkTSuQZB4JDuOduZrxUwQKFIUDLSgZ9L70tnMh9sKUMlAbH8rQIy62UASAl0B32GK1XdeWfIixcoHYGK0bqAi9kbqxRxM-8CpDTWTlCb_v-0K6TKI83Zcx1K65MNTSQTg00Qq8G6Hmry3ET6E3q1AEBLRAd2Qqhv033Nfu6-33_0xHTANzqe113NrzUQKyKNGVBuV4OyWB98UjFVL5eRYyEaZqV8q-YAtaItJRqhJ60I2ooEIXvCsgD1DyNiz_XRU-mk_Sw-e_QZ-gO8DvRet9sofVmsfLPgUM19kUylkuQfhU2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7LLqgv3i-jq0YR8aWzbZqmjfgy7Lo76swIOouLICHJJCA7tjLTAfHXe056WVZWEd_a5gvkdtIvyTlfCHkmBfeJTpJIs0RH3MgiMqLg6GWeSmuc1xoDnKczMT7mb0-yky3yqouFafQh-g03tIwwX6OB44b03plqqC71kPEM46t28HwOzfLgw5l4lBRBiwAP2qIsSXmnKxSzvT7rub_RDjbsj4uo5nnmGn49h9fIl67QjcfJ6XBTm6H9-Zue4__W6jq52nJSOmoG0Q2y5cqb5NK0PXW_Rd7vV5iEN4wgrsbAKrp0uM9Gl5VevKSjkn79Fu47ohjPjy4_Kwp0mK7rVXXqKIwHeKk2NRTHrW-T48PX8_1x1F7EENlMZnHEgeMk3HG70E5Ib4DFJMDMihS6XziT2yx23hTCM-ZtGod1WGyE8AApgPGkd8h2WZXuHqGZ9cwsYNHIrOe5iLXRMnELJz3ktEYMyIuuQ5RtVcrxsoylavSVmYIGUqGBBuRpD_3eSHNcBHoeerVHQAugL1ueqU-zI5V-PPh8NJmnCoC7Xber1ozXCrhVHmYtKNeTPhkMEE9VdOmqDWIEzNRpIf6KyWGZyAohB-RuM6T6AjH4LoE_QM3DwPhzXdRoNgoP9_8d-phcHs-nEzV5M3v3gFwBupc1zji7ZLtebdxDoFS1eRQs5xfc7hlT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lheKL98tq1Sgivsx2JpPJTPRpad1WbVfRFosIIckkIF1nyu4siL_eczKXUqkivs1MvkBuJ_MlOecLIc-k4D7RSRJpluiIG1lERhQcvcxTaY3zWmOA8-FM7B_ztyfZyRp51cfCtPoQw4YbWkaYr9HAz0q_fS4aqis9ZjzD8KoNLmB1hYzo47l2lBRBigDP2aIsSXkvKxSz7SHrhZ_RBrbrj8uY5kXiGv4802vka1_m1uHkdLxqzNj-_E3O8T8rdZ1c7RgpnbRD6AZZc9VNsnnYnbnfIu93akzC-0UQ12BYFZ073GWj81qXL-mkot--h9uOKEbzo8PPggIZpstmUZ86CqMBXupVA6Vxy9vkePr6aGc_6q5hiGwmszjiwHAS7rgttRPSG-AwCfCyIoXOF87kNoudN4XwjHmbxmEVFhshPEAK4DvpHbJe1ZW7R2hmPTMlLBmZ9TwXsTZaJq500kNOa8SIvOj7Q9lOoxyvypirVl2ZKWggFRpoRJ4O0LNWmOMy0PPQqQMCWgA92fJMfZ7tqfTT7pe9g6NUAXCr73XVGfFSAbPKw5wF5XoyJIP54ZmKrly9QoyAeTotxF8xOSwSWSHkiNxtR9RQIAbfJbAHqHkYF3-ui5rMJuHh_r9DH5PND7tTdfBm9u4BuQJcL2s9cbbIerNYuYfApxrzKNjNL3uHGAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corticospinal+tract+lesion+load%3A+An+imaging+biomarker+for+stroke+motor+outcomes&rft.jtitle=Annals+of+neurology&rft.au=Feng%2C+Wuwei&rft.au=Wang%2C+Jasmine&rft.au=Chhatbar%2C+Pratik+Y&rft.au=Doughty%2C+Christopher&rft.date=2015-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=78&rft.issue=6&rft.spage=860&rft_id=info:doi/10.1002%2Fana.24510&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3922244271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |