带p-Laplacian算子的三阶微分方程边值问题正解的存在性

许多不同应用数学和物理领域的研究都可归结为带有p-Laplacian算子的边值问题,因此对此问题的研究具有重要的理论意义和应用价值.本文讨论了带p-Laplacian算子三阶三点边值问题:{(φp(u′))″(t)+a(t)f(t,u(t),u′(t))=0,0<t<1,u(0)=0,φp(u′)(1)=αφp(u′)(η),(φp(u′))′(0)=0的正解的存在性,其中φp(s)=|s|p-2 s,p>1.应用Avery-Peterson不动点定理,当非线性项f满足一定的增长条件时,得到上述边值问题至少存在三个正解的充分条件....

Full description

Saved in:
Bibliographic Details
Published in河北科技大学学报 Vol. 35; no. 6; pp. 524 - 528
Main Author 郭彦平 李春景 韩迎迎
Format Journal Article
LanguageChinese
Published 河北科技大学理学院,河北石家庄,050018 2014
Subjects
Online AccessGet full text
ISSN1008-1542
DOI10.7535/hbkd.2014yx05001

Cover

More Information
Summary:许多不同应用数学和物理领域的研究都可归结为带有p-Laplacian算子的边值问题,因此对此问题的研究具有重要的理论意义和应用价值.本文讨论了带p-Laplacian算子三阶三点边值问题:{(φp(u′))″(t)+a(t)f(t,u(t),u′(t))=0,0<t<1,u(0)=0,φp(u′)(1)=αφp(u′)(η),(φp(u′))′(0)=0的正解的存在性,其中φp(s)=|s|p-2 s,p>1.应用Avery-Peterson不动点定理,当非线性项f满足一定的增长条件时,得到上述边值问题至少存在三个正解的充分条件.
Bibliography:p-Laplacian; boundary value problem; Avery-Peterson's fixed point theorem
GUO Yanping, LI Chunjing, HAN Yingying (School of Science, Hebei University of Science and Technology,Shijiazhuang Hebei 050018,China)
Many researches on the fields of different applied mathematics and physics can be attributed to the boundary value problem with p-Laplacian.So the research on this issue has important theoretical significance and application value.In this paper,we consider the existenee of triple positive solutions for third-order differential equation boundary value problems with p-Laplacian{ (φp(u′))″(t)+a(t)f(t,u(t),u′(t))=0,0〈t〈1,u(0)=0,φp(u′)(1)=αφp(u)(η),(φp(u′))′(0)=0where φp (s) =[s[ρ 2 s,p〉 1.By using Avery-peterson's fixed point theorem,under f satisfies cevtain growth conditions,westudy the existence of at least three positive solutions for the above boundary value problem.
13-1225/TS
ISSN:1008-1542
DOI:10.7535/hbkd.2014yx05001