基于马氏随机场模型的空间近邻目标检测及量测划分
天基光学传感器对空间近邻目标的像平面跟踪过程中,传统方法在单帧恒虚警检测后进行量测划分,采用的虚警率过高可能引入较多的杂波点,过低则群目标在像平面的部分信息损失.在分析空间近邻目标在像平面特征的基础上,提出一种使用马氏随机场模型进行预检测处理然后以k-均值进行量测划分的方法,仿真结果表明,相比传统方法,基于马氏随机场模型的空间近邻目标检测及量测划分准确率更高,且在信噪比较低的情况下,性能改善明显....
Saved in:
Published in | 红外与毫米波学报 Vol. 34; no. 5; pp. 599 - 605 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学电子科学与工程学院,湖南长沙,410073
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-9014 |
DOI | 10.11972/j.issn.1001-9014.2015.05.015 |
Cover
Summary: | 天基光学传感器对空间近邻目标的像平面跟踪过程中,传统方法在单帧恒虚警检测后进行量测划分,采用的虚警率过高可能引入较多的杂波点,过低则群目标在像平面的部分信息损失.在分析空间近邻目标在像平面特征的基础上,提出一种使用马氏随机场模型进行预检测处理然后以k-均值进行量测划分的方法,仿真结果表明,相比传统方法,基于马氏随机场模型的空间近邻目标检测及量测划分准确率更高,且在信噪比较低的情况下,性能改善明显. |
---|---|
Bibliography: | 31-1577/TN In space-based optical systems,during the pixel-plane tracking for closely spaced objects( CSOs),in traditional methods,pixels are partitioned after constant false alarm rate detection( CFAR),w here higher false alarm rate results in more clutter measurements w hile low er false alarm rate results in the loss of targets' information. To solve this problem,CSOs' feature on pixel-plane w ere analyzed and a pre-detecting method using M arkov random field model( MRF) was proposed. Then pixels were partitioned with k-means. Simulations indicated that detection and partition w ith M RF provides higher performance than traditional method,especially w hen signal-noise ratio is poor. Markov random field; space-based optical system; closely spaced objects; multiple targets detection; pixel partition WANG Xue-Ying, LI Jun, SHENG Wei-Dong, AN Wei (College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China) |
ISSN: | 1001-9014 |
DOI: | 10.11972/j.issn.1001-9014.2015.05.015 |