基于马氏随机场模型的空间近邻目标检测及量测划分

天基光学传感器对空间近邻目标的像平面跟踪过程中,传统方法在单帧恒虚警检测后进行量测划分,采用的虚警率过高可能引入较多的杂波点,过低则群目标在像平面的部分信息损失.在分析空间近邻目标在像平面特征的基础上,提出一种使用马氏随机场模型进行预检测处理然后以k-均值进行量测划分的方法,仿真结果表明,相比传统方法,基于马氏随机场模型的空间近邻目标检测及量测划分准确率更高,且在信噪比较低的情况下,性能改善明显....

Full description

Saved in:
Bibliographic Details
Published in红外与毫米波学报 Vol. 34; no. 5; pp. 599 - 605
Main Author 王雪莹 李骏 盛卫东 安玮
Format Journal Article
LanguageChinese
Published 国防科技大学电子科学与工程学院,湖南长沙,410073 2015
Subjects
Online AccessGet full text
ISSN1001-9014
DOI10.11972/j.issn.1001-9014.2015.05.015

Cover

More Information
Summary:天基光学传感器对空间近邻目标的像平面跟踪过程中,传统方法在单帧恒虚警检测后进行量测划分,采用的虚警率过高可能引入较多的杂波点,过低则群目标在像平面的部分信息损失.在分析空间近邻目标在像平面特征的基础上,提出一种使用马氏随机场模型进行预检测处理然后以k-均值进行量测划分的方法,仿真结果表明,相比传统方法,基于马氏随机场模型的空间近邻目标检测及量测划分准确率更高,且在信噪比较低的情况下,性能改善明显.
Bibliography:31-1577/TN
In space-based optical systems,during the pixel-plane tracking for closely spaced objects( CSOs),in traditional methods,pixels are partitioned after constant false alarm rate detection( CFAR),w here higher false alarm rate results in more clutter measurements w hile low er false alarm rate results in the loss of targets' information. To solve this problem,CSOs' feature on pixel-plane w ere analyzed and a pre-detecting method using M arkov random field model( MRF) was proposed. Then pixels were partitioned with k-means. Simulations indicated that detection and partition w ith M RF provides higher performance than traditional method,especially w hen signal-noise ratio is poor.
Markov random field; space-based optical system; closely spaced objects; multiple targets detection; pixel partition
WANG Xue-Ying, LI Jun, SHENG Wei-Dong, AN Wei (College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)
ISSN:1001-9014
DOI:10.11972/j.issn.1001-9014.2015.05.015