基于三苯胺/二苯砜的热激活延迟荧光材料

通过Suzuki反应合成了三种基于三苯胺/二苯砜的热激活延迟荧光(TADF)材料(1–3),采用紫外-可见(UV-Vis)吸收光谱、时间分辨荧光发射光谱、循环伏安(CV)测试、理论计算、热重分析和差示扫描量热法,系统地研究了三种材料的光物理、电化学、延迟荧光性能和热稳定性.材料1–3均为基于分子内电荷转移(ICT)的双极性分子.三种材料在薄膜中的单线态-三线态能级差分别为0.46、0.39和0.29 eV.荧光量子效率和荧光寿命的测试结果表明,三种材料均能发射延迟荧光,其中材料3具有最佳的延迟荧光性能.材料1–3的最高占有分子轨道(HOMO)能级分别为–4.91、–4.89和–4.89 e V...

Full description

Saved in:
Bibliographic Details
Published in物理化学学报 Vol. 31; no. 8; pp. 1621 - 1628
Main Author 黄斌 代钰 班鑫鑫 蒋伟 张兆杭 孙开涌 林保平 孙岳明
Format Journal Article
LanguageChinese
Published 东南大学化学化工学院,南京211189 2015
东南大学成贤学院化工与制药工程系,南京210088%东南大学成贤学院化工与制药工程系,南京,210088%东南大学化学化工学院,南京,211189
Subjects
Online AccessGet full text
ISSN1000-6818
DOI10.3866/PKU.WHXB201506121

Cover

More Information
Summary:通过Suzuki反应合成了三种基于三苯胺/二苯砜的热激活延迟荧光(TADF)材料(1–3),采用紫外-可见(UV-Vis)吸收光谱、时间分辨荧光发射光谱、循环伏安(CV)测试、理论计算、热重分析和差示扫描量热法,系统地研究了三种材料的光物理、电化学、延迟荧光性能和热稳定性.材料1–3均为基于分子内电荷转移(ICT)的双极性分子.三种材料在薄膜中的单线态-三线态能级差分别为0.46、0.39和0.29 eV.荧光量子效率和荧光寿命的测试结果表明,三种材料均能发射延迟荧光,其中材料3具有最佳的延迟荧光性能.材料1–3的最高占有分子轨道(HOMO)能级分别为–4.91、–4.89和–4.89 e V.结合UV-Vis吸收光谱中得到的能隙(Eg)值,我们得到材料1–3的最低未占分子轨道(LUMO)能级,分别为–1.74、–1.89和–1.94 eV.热分析的结果表明,材料1–3具有其较高的热分解温度(Td,失重5%时的温度),分别为436、387和310℃.
Bibliography:Triphenylamine; Diphenyl sulfone; Bipolar; Intramolecular charge transfer; Energy gap between singlet and triplet; Thermally activated delayed fluorescence
11-1892/O6
HUANG Bin,DAI Yu,BAN Xin-Xin,JIANG Wei,ZHANG Zhao-Hang,SUN Kai-Yong,LIN Bao-Ping,SUN Yue-Ming(1 School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China; 2Department of Chemical and Pharmaceutical Engineering, Chengxian College, Southeast University, Nanjing 210088, P. R. China)
A series of thermally activated delayed fluorescence(TADF) materials(1–3) based on triphenylamine/diphenyl sulfone were synthesized by Suzuki cross-coupling reactions. The optical,electrochemical, delayed fluorescence, and thermal properties of these materials were characterized by UVVis spectroscopy, time-resolved fluorescence spectroscopic measurements, cyclic voltammetry(CV),theoretical calculations, thermal gravimetric analyses, and differential scanning calorimetry. Materials 1–3 are bipolar compounds based on intramolecular charg
ISSN:1000-6818
DOI:10.3866/PKU.WHXB201506121