基于随机森林算法的冬小麦生物量遥感估算模型对比
为了寻求高效的冬小麦生物量估算方法,该研究获取了2014年陕西省杨凌区拔节期、抽穗期和灌浆期的冬小麦生物量和对应的RADARSAT-2全极化雷达、GF1-WFV多光谱数据,并利用随机森林算法(random forest,RF)将光谱、雷达后向散射、光学植被指数和雷达植被指数结合进行冬小麦生物量回归建模。将相关系数分析(correlation coefficient,r)、袋外数据(out-of-bag data,OOB)重要性和灰色关联分析(grey relational analysis,GRA)与随机森林算法(RF)进行整合,构建了3种冬小麦生物量估算模型:r-RF、OOB-RF和GRA-...
Saved in:
| Published in | 农业工程学报 Vol. 32; no. 18; pp. 175 - 182 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
河南理工大学测绘与国土信息工程学院,焦作,454000
2016
北京市农业物联网工程技术研究中心,北京 100097 农业部农业信息技术重点实验室,北京 100097 国家农业信息化工程技术研究中心,北京100097 北京农业信息技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2016.18.024 |
Cover
| Summary: | 为了寻求高效的冬小麦生物量估算方法,该研究获取了2014年陕西省杨凌区拔节期、抽穗期和灌浆期的冬小麦生物量和对应的RADARSAT-2全极化雷达、GF1-WFV多光谱数据,并利用随机森林算法(random forest,RF)将光谱、雷达后向散射、光学植被指数和雷达植被指数结合进行冬小麦生物量回归建模。将相关系数分析(correlation coefficient,r)、袋外数据(out-of-bag data,OOB)重要性和灰色关联分析(grey relational analysis,GRA)与随机森林算法(RF)进行整合,构建了3种冬小麦生物量估算模型:r-RF、OOB-RF和GRA-RF,并分别利用3种估算模型对冬小麦生物量进行了估算。结果表明:r-RF、OOB-RF和GRA-RF3种模型分别采用3、4、10组数据时,验证决定系数分别为0.70、0.70和0.65,平均绝对误差分别为0.162、0.164和0.172 kg/m^2,均方根误差分别为0.218、0.221和0.236 kg/m^2,r-RF和OOB-RF比GRA-RF对冬小麦生物量有更好而的预测能力。研究结果证实了随机森林算法对冬小麦生物量进行遥感估算的潜力。 |
|---|---|
| Bibliography: | 11-2047/S Yue Jibo1,2, Yang Guijun2,3,4,5, Feng Haikuan2,3,4,5 (1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2. Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; 4. Key Laboratory of Agriinformatics Ministry of Agriculture, Beijing 100097, China; 5. Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China) remote sensing; biomass; model; winter wheat; random forest algorithm; grey relational analysis Biomass is one of important agricultural crop parameters, and has significant meanings in agriculture production management and decision-making. The estimated of biomass by remote sensing is of great importance for the real-time and dynamic crop information and can be acquired by remote sensing detection technology. The random forest algorithm(RF), from which machine learn |
| ISSN: | 1002-6819 |
| DOI: | 10.11975/j.issn.1002-6819.2016.18.024 |