分数阶脉冲微分方程组边值问题解的存在性
通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程组边值问题解的存在性和唯一性,并给出例子说明所需要的条件是可以满足的。...
        Saved in:
      
    
          | Published in | 河北科技大学学报 Vol. 36; no. 2; pp. 134 - 143 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            河北科技大学理学院,河北石家庄,050018
    
        2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1008-1542 | 
| DOI | 10.7535/hbkd.2015yx02004 | 
Cover
| Summary: | 通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程组边值问题解的存在性和唯一性,并给出例子说明所需要的条件是可以满足的。 | 
|---|---|
| Bibliography: | numerical solution of ordinary differential equations ;contraction mapping principle;differential equations ; impulsive; fractional calculus; boundary value problem JIANG Weihua, LI Haiming (School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China) 13-1225/TS By defining appropriate linear space and norm, giving the appropriate operator, using the contraction mapping principle and krasnoselskii fixed point theorem respectively, the existence and uniqueness of solutions for boundary value problem of fractional order impulsive differential equations systems are investigated under certain condition that nonlinear term and pulse value are satisfied. An example is given to illustrate that the required conditions can be satisfied.  | 
| ISSN: | 1008-1542 | 
| DOI: | 10.7535/hbkd.2015yx02004 |