基于GPS-IR的美国中西部地区NDVI时间序列反演

基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 24; pp. 183 - 188
Main Author 吴继忠 吴玮
Format Journal Article
LanguageChinese
Published 南京工业大学测绘科学与技术学院,南京,211816 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.24.024

Cover

Abstract 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P〈0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。
AbstractList P228.4%P237.9; 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR (GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P<0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。
基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P〈0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。
Abstract_FL The NDVI (normalized difference vegetation index) data, routinely derived from the AVHRR (advanced very high resolution radiometer) or MODIS (moderate resolution imaging spectroradiometer) imagery, is a key indicator of vegetation status and a useful parameter in studies of terrestrial vegetation cover, it has been widely used in remote sensing studies to reflect regional and global vegetation dynamics. However, the inherent defects of NDVI, including the atmospheric noise, soil effects and saturation problems are unavoidable, and thus impede further analysis and have a risk to generating erroneous results. Global Positioning System-Interferometric Reflectometry (GPS-IR) is a bistatic radar remote sensing technique that relates temporal changes in reflected GPS signals to changes in environmental parameters surrounding a ground-based GPS site. All GPS satellites transmit signals at L-band, which is similar to those used in active microwave radar applications. L-band signals have a higher correlation with vegetation water content, therefore GPS reflections will be sensitive to water within and on the surface of vegetation, as well as water in soil and snow. The sensing footprint of GPS-IR is on the order of a thousand square meters, which depends on the antenna height and satellite elevation angle. Other than specially-designed antenna or receiver in order to estimate environmental parameters, GPS-IR utilizes geodetic-quality GPS receivers and antennas, which are currently used at many of the already-existing GPS stations. This article presents a new method to retrieve regional NDVI data using NMRI (normalized microwave reflection index), which is an index derived from GPS observations. An experiment was conducted to evaluate the feasibility of the NDVI retrieval using NMRI. In the experiment, continuous GPS observations of four plate boundary observatory GPS reference stations in midwestern America during the interval 2008-2012 and MOD13Q1 product within the same time from MODIS were used. In the first step, the NMRI time series were calculated with the GPS pseudoranges and carrier phase observations preprocessed with an improved Turboedit method, and then NDVI time series were extracted from MOD13Q1 product. In the second step, NMRI and NDVI were compared and analyzed. The temporal fluctuations of NMRI showed a clear periodicity as well as sudden drops, which were not compatible with the gradual process of vegetation change. Fast Fourier transform revealed that the annual and semi-annual periodicities exhibited dominant amplitude. To obtain cleaned NMRI data, trigonometric polynomial fitting method was adopted to remove outliers. A relatively high correlation coefficient between NMRI and NDVI was found, the coefficients of determination varied from 0.697 to 0.818 (with a significance level ofP<0.001), showing a near linear relationship involving these variables. With regression analysis, a linear retrieve model for NDVI could be established on each reference station, the root mean square of NDVI retrieve errors varied from 0.059 to 0.079. The outcomes of this study suggested that GPS-IR would be almost equally capable of retrieving regional NDVI data, in contrast, GPS-IR had the potential to be in near real time, with low price and high temporal resolution, and what’s more, existing GPS networks around the world had the potential to be the NDVI sensors, which could be regarded as a new opportunity to obtain NDVI data.
Author 吴继忠 吴玮
AuthorAffiliation 南京工业大学测绘科学与技术学院,南京211816
AuthorAffiliation_xml – name: 南京工业大学测绘科学与技术学院,南京,211816
Author_FL Wu Jizhong
Wu Wei
Author_FL_xml – sequence: 1
  fullname: Wu Jizhong
– sequence: 2
  fullname: Wu Wei
Author_xml – sequence: 1
  fullname: 吴继忠 吴玮
BookMark eNo9j7tKA0EARaeIYIz5CUGsdp3HzmzGTqLGQFDRYBt2ZnbiBp1oFtHUWlho0ggLKlgJNoKFiCw-fiaTmL9wJWJ14XK4lzMDcqZtQgDmEXQR4j5dbLlRHBsXQYgdVkLcxRAxF3suxF4O5P_7aVCM40hAiogPoYfyYMnep4O0V9nacarbo5vz0WfP3n4M3p6-H77GZ4_27tlephsru9Vh8jpOXmzatxeJ7V8N369nwZQO9uOw-JcFUF9brZfXndpmpVperjmScs_xMaYh4kxC6UuiFKSaYcqUQCUllIeVwAHTBDGmudIMSU0hDRkhMhCMhYIUwMJk9iQwOjDNRqt93DHZYcN0m_JU_KpiLxPNyLkJKffapnkUZexhJzoIOt0G8yHniHJOfgBP4moA
ClassificationCodes P228.4%P237.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.24.024
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Retrieving NDVI in midwestern America using GPS-interferometric reflectometry
DocumentTitle_FL Retrieving NDVI in midwestern America using GPS-interferometric reflectometry
EndPage 188
ExternalDocumentID nygcxb201624024
670991599
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 江苏省测绘地理信息科研项目
  funderid: (41504024); (JSCHKY201413)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c594-7225e196c0c7c3dd05f6256db18dbd42db2a6f3166f9df61cf505e633cab66eb3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:07:20 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords models
模型
vegetation
remote sensing
遥感
反演
归一化植被指数
correlation analysis
normalized difference vegetation index
植被
归一化微波反射指数
相关分析
GPS-IR
GPS-interferometric reflectometry
retrieve
normalized microwave reflection index
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-7225e196c0c7c3dd05f6256db18dbd42db2a6f3166f9df61cf505e633cab66eb3
Notes 11-2047/S
The NDVI(normalized difference vegetation index) data,routinely derived from the AVHRR(advanced very high resolution radiometer) or MODIS(moderate resolution imaging spectroradiometer) imagery,is a key indicator of vegetation status and a useful parameter in studies of terrestrial vegetation cover,it has been widely used in remote sensing studies to reflect regional and global vegetation dynamics.However,the inherent defects of NDVI,including the atmospheric noise,soil effects and saturation problems are unavoidable,and thus impede further analysis and have a risk to generating erroneous results.Global Positioning System-Interferometric Reflectometry(GPS-IR) is a bistatic radar remote sensing technique that relates temporal changes in reflected GPS signals to changes in environmental parameters surrounding a ground-based GPS site.All GPS satellites transmit signals at L-band,which is similar to those used in active microwave radar applications.L-band signals have a higher correlation with vegetation
PageCount 6
ParticipantIDs wanfang_journals_nygcxb201624024
chongqing_primary_670991599
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 南京工业大学测绘科学与技术学院,南京,211816
Publisher_xml – name: 南京工业大学测绘科学与技术学院,南京,211816
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1389375
Snippet 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized...
P228.4%P237.9; 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 183
SubjectTerms GPS-IR
反演
归一化微波反射指数
归一化植被指数
植被
模型
相关分析
遥感
Title 基于GPS-IR的美国中西部地区NDVI时间序列反演
URI http://lib.cqvip.com/qk/90712X/201624/670991599.html
https://d.wanfangdata.com.cn/periodical/nygcxb201624024
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaVEJwQDxFKaAe8HHDPr02N2-yS4tEhaCg3qJ4H-kphdJK0CscOEB7QYoESJyQuCBxQAhFPP5Mt6X_ghmvky5Q8bpYE-_E82XG9ow3HpuQi3YKXjormJVynll-mgpLFZ6wMrB2GjpOFgaYO3xtgc3d8q8uBUsTk3O1XUvra6qZbhyYV_I_VoU6sCtmyf6DZceNQgXQYF8owcJQ_pWNaRxQkdBI0tjHksdXrt-05m_QOKQCPvpIRDHUa86IRm3NyakEAsqARgmNBeUelVzztGhkI8GBkAvt2_M0ZlRAKwz5kPDxMQpLNB_HSiQSytvIHLVodaHwKObVTxk2XckGZNhCiOIBHwjmEdYAJsmwBS7h0agnaFS2FgvCIyq1NIAt7QNZ4LfKuP4uo0qy1P1OI2lrwFpfslVDUsMmfSNmDCkKNEiNQHANG1Ts1Hj011HRGj-3td5aVCY1HlCgoNKFbn0AErflYnouq7kJ9COMm8ne-JH997Tro8Rw4xWc6q4eE2A41T2Gv_ouEQbaeaGI5lgEbj9kTddv2qbNH48H7z_opfcV8uD_ZP4kmXJDiLkaZEpG7SjZD40dXP2P524XT0Bg-0vNwPHwooPx9ijcHBDonQIGxiFCRyAv_Q4inlGyvNLv3YXISyfC9Ytuv1eL2RaPkaNmsTUrq5FznExsLJ8gR2Rv1Rw4k58kl8tXw-3hZjVudp8_2v2yWb74vP3x7bfXX_cevilfviufDHEc7Aw-7A3el8Ot8vGg3Hq68-nZKbKYxIutOcvcJ2KlgfCtEFxXjlOQnYapl2V2UMDin2XK4ZnKfDdTbpcVoBdWCJi9nLSA1UHOPC_tKsZy5Z0mjf5KPz9DZjPPy1WQu6B04atAKAfCbNVViodccd-ZJjNjJXTuVMfGdPCkRAGrBzFNZo1aOmYyudf5yYxn_8wyQw4jXb0OPEcaa6vr-XkIkNfUBWP77zSvjOg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGPS-IR%E7%9A%84%E7%BE%8E%E5%9B%BD%E4%B8%AD%E8%A5%BF%E9%83%A8%E5%9C%B0%E5%8C%BANDVI%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%90%B4%E7%BB%A7%E5%BF%A0&rft.au=%E5%90%B4%E7%8E%AE&rft.date=2016&rft.pub=%E5%8D%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C211816&rft.issn=1002-6819&rft.volume=32&rft.issue=24&rft.spage=183&rft.epage=188&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.24.024&rft.externalDocID=nygcxb201624024
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg