基于GPS-IR的美国中西部地区NDVI时间序列反演
基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反...
Saved in:
Published in | 农业工程学报 Vol. 32; no. 24; pp. 183 - 188 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
南京工业大学测绘科学与技术学院,南京,211816
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2016.24.024 |
Cover
Abstract | 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P〈0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。 |
---|---|
AbstractList | P228.4%P237.9; 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR (GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P<0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized difference vegetation index,NDVI)存在大气噪声、土壤背景、饱和度等固有问题。GPS(global positioning system)卫星播发的L波段信号对土壤和植被水分含量变化较为敏感,GPS-IR(GPS-interferometric reflectometry)利用测地型接收机和天线记录GPS反射信号的变化,进而反演测站环境参数。该文研究了利用GPS-IR反演区域NDVI时间序列的方法。采用4个GPS参考站2007-2015年近9 a的连续观测数据,由伪距和相位观测值计算了归一化微波反射指数(normalized microwave reflection index,NMRI),傅立叶变换显示NMRI具有明显的周期特性,其中年周期和半年周期分量普遍较为突出。利用三角多项式拟合剔除NMRI中由积雪和降雨引起的粗差点后,其波动与同时间段内MODIS NDVI的趋势一致。一元线性回归结果显示NMRI与NDVI之间存在显著线性相关,相关系数在0.697~0.818(P〈0.001),NDVI反演误差的均方根误差在0.059~0.079,表明GPS-IR反演区域NDVI时间序列是可行的,该研究为获取准实时、低成本和高时间分辨率的NDVI提供了新的思路。 |
Abstract_FL | The NDVI (normalized difference vegetation index) data, routinely derived from the AVHRR (advanced very high resolution radiometer) or MODIS (moderate resolution imaging spectroradiometer) imagery, is a key indicator of vegetation status and a useful parameter in studies of terrestrial vegetation cover, it has been widely used in remote sensing studies to reflect regional and global vegetation dynamics. However, the inherent defects of NDVI, including the atmospheric noise, soil effects and saturation problems are unavoidable, and thus impede further analysis and have a risk to generating erroneous results. Global Positioning System-Interferometric Reflectometry (GPS-IR) is a bistatic radar remote sensing technique that relates temporal changes in reflected GPS signals to changes in environmental parameters surrounding a ground-based GPS site. All GPS satellites transmit signals at L-band, which is similar to those used in active microwave radar applications. L-band signals have a higher correlation with vegetation water content, therefore GPS reflections will be sensitive to water within and on the surface of vegetation, as well as water in soil and snow. The sensing footprint of GPS-IR is on the order of a thousand square meters, which depends on the antenna height and satellite elevation angle. Other than specially-designed antenna or receiver in order to estimate environmental parameters, GPS-IR utilizes geodetic-quality GPS receivers and antennas, which are currently used at many of the already-existing GPS stations. This article presents a new method to retrieve regional NDVI data using NMRI (normalized microwave reflection index), which is an index derived from GPS observations. An experiment was conducted to evaluate the feasibility of the NDVI retrieval using NMRI. In the experiment, continuous GPS observations of four plate boundary observatory GPS reference stations in midwestern America during the interval 2008-2012 and MOD13Q1 product within the same time from MODIS were used. In the first step, the NMRI time series were calculated with the GPS pseudoranges and carrier phase observations preprocessed with an improved Turboedit method, and then NDVI time series were extracted from MOD13Q1 product. In the second step, NMRI and NDVI were compared and analyzed. The temporal fluctuations of NMRI showed a clear periodicity as well as sudden drops, which were not compatible with the gradual process of vegetation change. Fast Fourier transform revealed that the annual and semi-annual periodicities exhibited dominant amplitude. To obtain cleaned NMRI data, trigonometric polynomial fitting method was adopted to remove outliers. A relatively high correlation coefficient between NMRI and NDVI was found, the coefficients of determination varied from 0.697 to 0.818 (with a significance level ofP<0.001), showing a near linear relationship involving these variables. With regression analysis, a linear retrieve model for NDVI could be established on each reference station, the root mean square of NDVI retrieve errors varied from 0.059 to 0.079. The outcomes of this study suggested that GPS-IR would be almost equally capable of retrieving regional NDVI data, in contrast, GPS-IR had the potential to be in near real time, with low price and high temporal resolution, and what’s more, existing GPS networks around the world had the potential to be the NDVI sensors, which could be regarded as a new opportunity to obtain NDVI data. |
Author | 吴继忠 吴玮 |
AuthorAffiliation | 南京工业大学测绘科学与技术学院,南京211816 |
AuthorAffiliation_xml | – name: 南京工业大学测绘科学与技术学院,南京,211816 |
Author_FL | Wu Jizhong Wu Wei |
Author_FL_xml | – sequence: 1 fullname: Wu Jizhong – sequence: 2 fullname: Wu Wei |
Author_xml | – sequence: 1 fullname: 吴继忠 吴玮 |
BookMark | eNo9j7tKA0EARaeIYIz5CUGsdp3HzmzGTqLGQFDRYBt2ZnbiBp1oFtHUWlho0ggLKlgJNoKFiCw-fiaTmL9wJWJ14XK4lzMDcqZtQgDmEXQR4j5dbLlRHBsXQYgdVkLcxRAxF3suxF4O5P_7aVCM40hAiogPoYfyYMnep4O0V9nacarbo5vz0WfP3n4M3p6-H77GZ4_27tlephsru9Vh8jpOXmzatxeJ7V8N369nwZQO9uOw-JcFUF9brZfXndpmpVperjmScs_xMaYh4kxC6UuiFKSaYcqUQCUllIeVwAHTBDGmudIMSU0hDRkhMhCMhYIUwMJk9iQwOjDNRqt93DHZYcN0m_JU_KpiLxPNyLkJKffapnkUZexhJzoIOt0G8yHniHJOfgBP4moA |
ClassificationCodes | P228.4%P237.9 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2016.24.024 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Retrieving NDVI in midwestern America using GPS-interferometric reflectometry |
DocumentTitle_FL | Retrieving NDVI in midwestern America using GPS-interferometric reflectometry |
EndPage | 188 |
ExternalDocumentID | nygcxb201624024 670991599 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 江苏省测绘地理信息科研项目 funderid: (41504024); (JSCHKY201413) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c594-7225e196c0c7c3dd05f6256db18dbd42db2a6f3166f9df61cf505e633cab66eb3 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:20 EDT 2025 Wed Feb 14 10:07:20 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 24 |
Keywords | models 模型 vegetation remote sensing 遥感 反演 归一化植被指数 correlation analysis normalized difference vegetation index 植被 归一化微波反射指数 相关分析 GPS-IR GPS-interferometric reflectometry retrieve normalized microwave reflection index |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c594-7225e196c0c7c3dd05f6256db18dbd42db2a6f3166f9df61cf505e633cab66eb3 |
Notes | 11-2047/S The NDVI(normalized difference vegetation index) data,routinely derived from the AVHRR(advanced very high resolution radiometer) or MODIS(moderate resolution imaging spectroradiometer) imagery,is a key indicator of vegetation status and a useful parameter in studies of terrestrial vegetation cover,it has been widely used in remote sensing studies to reflect regional and global vegetation dynamics.However,the inherent defects of NDVI,including the atmospheric noise,soil effects and saturation problems are unavoidable,and thus impede further analysis and have a risk to generating erroneous results.Global Positioning System-Interferometric Reflectometry(GPS-IR) is a bistatic radar remote sensing technique that relates temporal changes in reflected GPS signals to changes in environmental parameters surrounding a ground-based GPS site.All GPS satellites transmit signals at L-band,which is similar to those used in active microwave radar applications.L-band signals have a higher correlation with vegetation |
PageCount | 6 |
ParticipantIDs | wanfang_journals_nygcxb201624024 chongqing_primary_670991599 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2016 |
Publisher | 南京工业大学测绘科学与技术学院,南京,211816 |
Publisher_xml | – name: 南京工业大学测绘科学与技术学院,南京,211816 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.1389375 |
Snippet | 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指数(normalized... P228.4%P237.9; 基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等卫星遥感影像获取的归一化植被指... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 183 |
SubjectTerms | GPS-IR 反演 归一化微波反射指数 归一化植被指数 植被 模型 相关分析 遥感 |
Title | 基于GPS-IR的美国中西部地区NDVI时间序列反演 |
URI | http://lib.cqvip.com/qk/90712X/201624/670991599.html https://d.wanfangdata.com.cn/periodical/nygcxb201624024 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaVEJwQDxFKaAe8HHDPr02N2-yS4tEhaCg3qJ4H-kphdJK0CscOEB7QYoESJyQuCBxQAhFPP5Mt6X_ghmvky5Q8bpYE-_E82XG9ow3HpuQi3YKXjormJVynll-mgpLFZ6wMrB2GjpOFgaYO3xtgc3d8q8uBUsTk3O1XUvra6qZbhyYV_I_VoU6sCtmyf6DZceNQgXQYF8owcJQ_pWNaRxQkdBI0tjHksdXrt-05m_QOKQCPvpIRDHUa86IRm3NyakEAsqARgmNBeUelVzztGhkI8GBkAvt2_M0ZlRAKwz5kPDxMQpLNB_HSiQSytvIHLVodaHwKObVTxk2XckGZNhCiOIBHwjmEdYAJsmwBS7h0agnaFS2FgvCIyq1NIAt7QNZ4LfKuP4uo0qy1P1OI2lrwFpfslVDUsMmfSNmDCkKNEiNQHANG1Ts1Hj011HRGj-3td5aVCY1HlCgoNKFbn0AErflYnouq7kJ9COMm8ne-JH997Tro8Rw4xWc6q4eE2A41T2Gv_ouEQbaeaGI5lgEbj9kTddv2qbNH48H7z_opfcV8uD_ZP4kmXJDiLkaZEpG7SjZD40dXP2P524XT0Bg-0vNwPHwooPx9ijcHBDonQIGxiFCRyAv_Q4inlGyvNLv3YXISyfC9Ytuv1eL2RaPkaNmsTUrq5FznExsLJ8gR2Rv1Rw4k58kl8tXw-3hZjVudp8_2v2yWb74vP3x7bfXX_cevilfviufDHEc7Aw-7A3el8Ot8vGg3Hq68-nZKbKYxIutOcvcJ2KlgfCtEFxXjlOQnYapl2V2UMDin2XK4ZnKfDdTbpcVoBdWCJi9nLSA1UHOPC_tKsZy5Z0mjf5KPz9DZjPPy1WQu6B04atAKAfCbNVViodccd-ZJjNjJXTuVMfGdPCkRAGrBzFNZo1aOmYyudf5yYxn_8wyQw4jXb0OPEcaa6vr-XkIkNfUBWP77zSvjOg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGPS-IR%E7%9A%84%E7%BE%8E%E5%9B%BD%E4%B8%AD%E8%A5%BF%E9%83%A8%E5%9C%B0%E5%8C%BANDVI%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%90%B4%E7%BB%A7%E5%BF%A0&rft.au=%E5%90%B4%E7%8E%AE&rft.date=2016&rft.pub=%E5%8D%97%E4%BA%AC%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C211816&rft.issn=1002-6819&rft.volume=32&rft.issue=24&rft.spage=183&rft.epage=188&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.24.024&rft.externalDocID=nygcxb201624024 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |