A novel feature extraction method based on dynamic handwriting for Parkinson’s disease detection

Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson’s disease. Extracting more discriminative features from handwriting is an important step. Although many f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0318021
Main Authors Lu, Huimin, Qi, Guolian, Wu, Dalong, Lin, Chenglin, Ma, Songzhe, Shi, Yingqi, Xue, Han
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0318021

Cover

Abstract Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson’s disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting’s kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method’s effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD .
AbstractList Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at
Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD.Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD.
Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD.
Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson’s disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting’s kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method’s effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD .
Audience Academic
Author Wu, Dalong
Shi, Yingqi
Qi, Guolian
Xue, Han
Lu, Huimin
Lin, Chenglin
Ma, Songzhe
AuthorAffiliation 2 Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
4 Changchun University of Chinese Medicine, Changchun, Jilin, China
3 Jilin Provincial Smart Health Joint Innovation Laboratory for the New Generation of AI, Changchun Univerity of Technology, Changchun, Jilin, China
Federal University of Paraiba, BRAZIL
1 School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin, China
AuthorAffiliation_xml – name: 2 Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
– name: Federal University of Paraiba, BRAZIL
– name: 1 School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin, China
– name: 3 Jilin Provincial Smart Health Joint Innovation Laboratory for the New Generation of AI, Changchun Univerity of Technology, Changchun, Jilin, China
– name: 4 Changchun University of Chinese Medicine, Changchun, Jilin, China
Author_xml – sequence: 1
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
– sequence: 2
  givenname: Guolian
  surname: Qi
  fullname: Qi, Guolian
– sequence: 3
  givenname: Dalong
  orcidid: 0000-0001-5567-1985
  surname: Wu
  fullname: Wu, Dalong
– sequence: 4
  givenname: Chenglin
  surname: Lin
  fullname: Lin, Chenglin
– sequence: 5
  givenname: Songzhe
  surname: Ma
  fullname: Ma, Songzhe
– sequence: 6
  givenname: Yingqi
  surname: Shi
  fullname: Shi, Yingqi
– sequence: 7
  givenname: Han
  surname: Xue
  fullname: Xue, Han
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39854412$$D View this record in MEDLINE/PubMed
BookMark eNqNksuO0zAUhiM0iLnAGyCIhIRg0WLHceKsUDXiUmmkQdy2lhMfty6uXexkhu54DV6PJ8FpM6MGzWKUReKT7_w-l_80ObLOQpI8xWiKSYnfrFznrTDTTQxPEcEMZfhBcoIrkk2KDJGjg-_j5DSEFUKUsKJ4lByTitE8x9lJUs9S667ApApE23lI4VfrRdNqZ9M1tEsn01oEkGk8y60Va92kS2HltdettotUOZ9-Ev6HtsHZv7__hFTqADEjldDCTudx8lAJE-DJ8D5Lvr1_9_X84-Ti8sP8fHYxaWhF8CQjNK9phSDWpqgsVJWDlAjXuGYMy1I1mBCFmkpQqWokSc4KBiWUBcqbosbkLHm-190YF_gwnsAJplWRVQWlkZjvCenEim-8Xgu_5U5ovgs4v-DCt7oxwEEUUmZZUxclygmqWUFVlUnS4IrhHFTUonutzm7E9loYcyuIEe83dFMC7zfEhw3FvLdDlV29BtmAjfM2o2LGf6xe8oW74hjHTinLo8KrQcG7nx2Elq91aMAYYcF1Q8MVKVl_2Yv_0LvHMlALETvXVrneAr0on7EsLzNW7q6d3kHFR0I0RWxR6RgfJbweJUSmje5aiC4EPv_y-f7s5fcx-_KAXYIw7TI40_VeC2Pw2eGob2d84_4I5Hug8S4ED-p-K_wHZdsZaQ
Cites_doi 10.1016/j.jneumeth.2020.108727
10.1016/j.future.2019.02.028
10.1007/s00521-023-08936-9
10.1109/ACCESS.2024.3367588
10.1007/BF00202785
10.1016/j.softx.2020.100456
10.1016/j.bspc.2022.103551
10.1016/S1474-4422(21)00030-2
10.1109/EHB.2013.6707378
10.1016/j.compbiomed.2023.107237
10.1002/mds.23193
10.1109/SIBGRAPI.2016.054
10.1016/j.jht.2017.01.002
10.1016/j.artmed.2016.01.004
10.1016/S0140-6736(14)61393-3
10.1109/ACCESS.2021.3119035
10.1016/j.eswa.2020.114405
10.1002/mdc3.12552
10.1016/j.knosys.2022.108701
10.1002/mds.25990
10.1155/2023/9921809
10.1016/j.eswa.2021.116158
10.1016/j.bspc.2023.105436
10.1109/RBME.2018.2840679
10.1002/mds.870110313
10.1002/mds.23674
10.3390/app10051827
10.1016/j.compbiomed.2019.103477
10.1016/j.future.2020.11.020
10.1016/S2468-2667(20)30190-0
10.1145/3397161
10.1016/j.advengsoft.2013.12.007
10.1016/j.knosys.2022.108457
10.1038/s41598-024-54680-y
10.1016/j.cmpb.2024.108066
10.1109/ICEE50131.2020.9260903
10.1038/s41598-024-70575-4
10.1016/j.cmpb.2019.07.007
10.1109/LSP.2019.2902936
10.1007/s11042-022-13759-2
10.1007/s11042-023-15811-1
10.1016/j.future.2023.03.033
10.1016/j.eswa.2020.113377
10.1016/S0140-6736(23)01429-0
10.1016/j.bbe.2021.12.007
10.1016/j.eswa.2022.117400
10.1109/ACCESS.2020.3005614
10.1016/j.jvcir.2020.102823
ContentType Journal Article
Copyright Copyright: © 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Lu et al 2025 Lu et al
2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Lu et al 2025 Lu et al
– notice: 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0318021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE




Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A feature extraction method for Parkinson’s disease detection
EISSN 1932-6203
ExternalDocumentID 3159629655
oai_doaj_org_article_ea6dd22cb670430b865f92d3c19814ef
10.1371/journal.pone.0318021
PMC11760584
A824728784
39854412
10_1371_journal_pone_0318021
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: No. JJKH20230763KJ
– fundername: ;
  grantid: No. 2022C041-2
– fundername: ;
  grantid: No. 20220204006YY
– fundername: ;
  grantid: No. 2023C042-6
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5931-2354b590e985f5d6f94edd01b1b881d7fc133f0c9a5dfb0d34868e7e7604c6b13
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:47 EDT 2025
Fri Oct 03 12:53:38 EDT 2025
Sun Oct 26 04:12:21 EDT 2025
Tue Sep 30 17:05:54 EDT 2025
Wed Oct 01 13:27:44 EDT 2025
Tue Oct 07 09:13:59 EDT 2025
Mon Oct 20 22:42:03 EDT 2025
Mon Oct 20 16:54:02 EDT 2025
Thu Oct 16 15:39:25 EDT 2025
Thu Oct 16 15:39:27 EDT 2025
Thu May 22 21:23:33 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Wed Oct 01 02:16:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5931-2354b590e985f5d6f94edd01b1b881d7fc133f0c9a5dfb0d34868e7e7604c6b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: NO authors have competing interests.
ORCID 0000-0001-5567-1985
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0318021
PMID 39854412
PQID 3159629655
PQPubID 1436336
PageCount e0318021
ParticipantIDs plos_journals_3159629655
doaj_primary_oai_doaj_org_article_ea6dd22cb670430b865f92d3c19814ef
unpaywall_primary_10_1371_journal_pone_0318021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760584
proquest_miscellaneous_3159693781
proquest_journals_3159629655
gale_infotracmisc_A824728784
gale_infotracacademiconefile_A824728784
gale_incontextgauss_ISR_A824728784
gale_incontextgauss_IOV_A824728784
gale_healthsolutions_A824728784
pubmed_primary_39854412
crossref_primary_10_1371_journal_pone_0318021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-24
PublicationDateYYYYMMDD 2025-01-24
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Z Qi (pone.0318021.ref014) 2024; 14
LC Afonso (pone.0318021.ref027) 2020; 71
A Ammour (pone.0318021.ref026) 2020; 183
X Wang (pone.0318021.ref021) 2024; 87
R Lamba (pone.0318021.ref028); 2021
J Cincovic (pone.0318021.ref036) 2024; 12
E Tolosa (pone.0318021.ref001) 2021; 20
ED Deharab (pone.0318021.ref011) 2022; 42
JA Nolazco-Flores (pone.0318021.ref009) 2021; 9
pone.0318021.ref025
T Foltynie (pone.0318021.ref004) 2024; 403
K Kumar (pone.0318021.ref029) 2024; 83
D Impedovo (pone.0318021.ref041) 2018; 12
A Letanneux (pone.0318021.ref006) 2014; 29
D Impedovo (pone.0318021.ref023) 2019; 26
L Abualigah (pone.0318021.ref047) 2022; 191
FA Hashim (pone.0318021.ref034) 2023; 35
R Plamondon (pone.0318021.ref040) 1995; 72
C Ma (pone.0318021.ref012) 2023; 145
LV Kalia (pone.0318021.ref003) 2015; 386
LC Ribeiro (pone.0318021.ref018) 2019; 115
I Aouraghe (pone.0318021.ref024) 2020; 339
I Aouraghe (pone.0318021.ref016) 2023; 82
P Drotár (pone.0318021.ref017) 2016; 67
G Deuschl (pone.0318021.ref002) 2020; 5
M Diaz (pone.0318021.ref019) 2021; 168
H Li (pone.0318021.ref032) 2021; 21
E Valla (pone.0318021.ref010) 2022; 75
MS Bryant (pone.0318021.ref037) 2018; 31
EH Houssein (pone.0318021.ref015) 2023; 164
pone.0318021.ref007
pone.0318021.ref008
A Faramarzi (pone.0318021.ref046) 2020; 152
M Barandas (pone.0318021.ref043) 2020; 11
R Olivares (pone.0318021.ref030) 2020; 10
IM El-Hasnony (pone.0318021.ref031) 2020; 8
ED Louis (pone.0318021.ref039) 2011; 26
T Eichhorn (pone.0318021.ref042) 1996; 11
C Ma (pone.0318021.ref020) 2022; 203
AA Heidari (pone.0318021.ref044) 2019; 97
M Thomas (pone.0318021.ref005) 2017; 4
PH Kraus (pone.0318021.ref038) 2010; 25
M Braik (pone.0318021.ref048) 2022; 243
X Wang (pone.0318021.ref022) 2024; 247
I Kamran (pone.0318021.ref049) 2021; 117
RR Rajammal (pone.0318021.ref033) 2022; 246
A Zhao (pone.0318021.ref013) 2023; 2023
S Mirjalili (pone.0318021.ref045) 2014; 69
A Cuk (pone.0318021.ref035) 2024; 14
References_xml – volume: 339
  start-page: 108727
  year: 2020
  ident: pone.0318021.ref024
  article-title: A novel approach combining temporal and spectral features of Arabic online handwriting for Parkinson’s disease prediction
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2020.108727
– volume: 97
  start-page: 849
  year: 2019
  ident: pone.0318021.ref044
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future generation computer systems
  doi: 10.1016/j.future.2019.02.028
– volume: 35
  start-page: 21979
  issue: 29
  year: 2023
  ident: pone.0318021.ref034
  article-title: Dimensionality reduction approach based on modified hunger games search: case study on Parkinson’s disease phonation
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08936-9
– volume: 12
  start-page: 26719
  year: 2024
  ident: pone.0318021.ref036
  article-title: Neurodegenerative Condition Detection Using Modified Metaheuristic for Attention Based Recurrent Neural Networks and Extreme Gradient Boosting Tuning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3367588
– volume: 72
  start-page: 295
  year: 1995
  ident: pone.0318021.ref040
  article-title: A kinematic theory of rapid human movements: Part I. Movement representation and generation
  publication-title: Biological cybernetics
  doi: 10.1007/BF00202785
– volume: 11
  start-page: 100456
  year: 2020
  ident: pone.0318021.ref043
  article-title: TSFEL: Time series feature extraction library
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100456
– volume: 2021
  start-page: 1
  ident: pone.0318021.ref028
  article-title: A systematic approach to diagnose Parkinson’s disease through kinematic features extracted from handwritten drawings
  publication-title: Journal of Reliable Intelligent Environments
– volume: 75
  start-page: 103551
  year: 2022
  ident: pone.0318021.ref010
  article-title: Tremor-related feature engineering for machine learning based Parkinson’s disease diagnostics
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103551
– volume: 20
  start-page: 385
  issue: 5
  year: 2021
  ident: pone.0318021.ref001
  article-title: Challenges in the diagnosis of Parkinson’s disease
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(21)00030-2
– ident: pone.0318021.ref007
  doi: 10.1109/EHB.2013.6707378
– volume: 164
  start-page: 107237
  year: 2023
  ident: pone.0318021.ref015
  article-title: Dynamic coati optimization algorithm for biomedical classification tasks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107237
– volume: 25
  start-page: 2164
  issue: 13
  year: 2010
  ident: pone.0318021.ref038
  article-title: Spiralometry: computerized assessment of tremor amplitude on the basis of spiral drawing
  publication-title: Movement Disorders
  doi: 10.1002/mds.23193
– ident: pone.0318021.ref008
  doi: 10.1109/SIBGRAPI.2016.054
– volume: 31
  start-page: 29
  issue: 1
  year: 2018
  ident: pone.0318021.ref037
  article-title: Feasibility study: Effect of hand resistance exercise on handwriting in Parkinson’s disease and essential tremor
  publication-title: Journal of Hand Therapy
  doi: 10.1016/j.jht.2017.01.002
– volume: 67
  start-page: 39
  year: 2016
  ident: pone.0318021.ref017
  article-title: Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease
  publication-title: Artificial intelligence in Medicine
  doi: 10.1016/j.artmed.2016.01.004
– volume: 386
  start-page: 896
  issue: 9996
  year: 2015
  ident: pone.0318021.ref003
  article-title: Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)61393-3
– volume: 9
  start-page: 141599
  year: 2021
  ident: pone.0318021.ref009
  article-title: Exploiting spectral and cepstral handwriting features on diagnosing Parkinson’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3119035
– volume: 168
  start-page: 114405
  year: 2021
  ident: pone.0318021.ref019
  article-title: Sequence-based dynamic handwriting analysis for Parkinson’s disease detection with one-dimensional convolutions and BiGRUs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114405
– volume: 4
  start-page: 806
  issue: 6
  year: 2017
  ident: pone.0318021.ref005
  article-title: Handwriting analysis in Parkinson’s disease: current status and future directions
  publication-title: Movement disorders clinical practice
  doi: 10.1002/mdc3.12552
– volume: 246
  start-page: 108701
  year: 2022
  ident: pone.0318021.ref033
  article-title: Binary grey wolf optimizer with mutation and adaptive k-nearest neighbour for feature selection in Parkinson’s disease diagnosis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108701
– volume: 29
  start-page: 1467
  issue: 12
  year: 2014
  ident: pone.0318021.ref006
  article-title: From micrographia to Parkinson’s disease dysgraphia
  publication-title: Movement Disorders
  doi: 10.1002/mds.25990
– volume: 2023
  start-page: 9921809
  issue: 1
  year: 2023
  ident: pone.0318021.ref013
  article-title: A Spatio-Temporal Siamese Neural Network for Multimodal Handwriting Abnormality Screening of Parkinson’s Disease
  publication-title: International Journal of Intelligent Systems
  doi: 10.1155/2023/9921809
– volume: 191
  start-page: 116158
  year: 2022
  ident: pone.0318021.ref047
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116158
– volume: 87
  start-page: 105436
  year: 2024
  ident: pone.0318021.ref021
  article-title: Comparison of one-two-and three-dimensional CNN models for drawing-test-based diagnostics of the Parkinson’s disease
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105436
– volume: 12
  start-page: 209
  year: 2018
  ident: pone.0318021.ref041
  article-title: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective
  publication-title: IEEE reviews in biomedical engineering
  doi: 10.1109/RBME.2018.2840679
– volume: 11
  start-page: 289
  issue: 3
  year: 1996
  ident: pone.0318021.ref042
  article-title: Computational analysis of open loop handwriting movements in Parkinson’s disease: a rapid method to detect dopamimetic effects
  publication-title: Movement disorders: official journal of the Movement Disorder Society
  doi: 10.1002/mds.870110313
– volume: 26
  start-page: 1515
  issue: 8
  year: 2011
  ident: pone.0318021.ref039
  article-title: Tremor severity and age: A cross-sectional, population-based study of 2,524 young and midlife normal adults
  publication-title: Movement disorders
  doi: 10.1002/mds.23674
– volume: 10
  start-page: 1827
  issue: 5
  year: 2020
  ident: pone.0318021.ref030
  article-title: An optimized brain-based algorithm for classifying Parkinson’s disease
  publication-title: Applied Sciences
  doi: 10.3390/app10051827
– volume: 115
  start-page: 103477
  year: 2019
  ident: pone.0318021.ref018
  article-title: Bag of samplings for computer-assisted Parkinson’s disease diagnosis based on recurrent neural networks
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2019.103477
– volume: 117
  start-page: 234
  year: 2021
  ident: pone.0318021.ref049
  article-title: Handwriting dynamics assessment using deep neural network for early identification of Parkinson’s disease
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.11.020
– volume: 5
  start-page: e551
  issue: 10
  year: 2020
  ident: pone.0318021.ref002
  article-title: The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017
  publication-title: The Lancet Public Health
  doi: 10.1016/S2468-2667(20)30190-0
– volume: 21
  start-page: 1
  issue: 3
  year: 2021
  ident: pone.0318021.ref032
  article-title: A hybrid feature selection algorithm based on a discrete artificial bee colony for Parkinson’s diagnosis
  publication-title: ACM Transactions on Internet Technology
  doi: 10.1145/3397161
– volume: 69
  start-page: 46
  year: 2014
  ident: pone.0318021.ref045
  article-title: Grey wolf optimizer
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 243
  start-page: 108457
  year: 2022
  ident: pone.0318021.ref048
  article-title: White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108457
– volume: 14
  start-page: 4309
  issue: 1
  year: 2024
  ident: pone.0318021.ref035
  article-title: Tuning attention based long-short term memory neural networks for Parkinson’s disease detection using modified metaheuristics
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-54680-y
– volume: 247
  start-page: 108066
  year: 2024
  ident: pone.0318021.ref022
  article-title: LSTM-CNN: An efficient diagnostic network for Parkinson’s disease utilizing dynamic handwriting analysis
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2024.108066
– ident: pone.0318021.ref025
  doi: 10.1109/ICEE50131.2020.9260903
– volume: 14
  start-page: 20435
  issue: 1
  year: 2024
  ident: pone.0318021.ref014
  article-title: An improved Coati Optimization Algorithm with multiple strategies for engineering design optimization problems
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-70575-4
– volume: 183
  start-page: 104979
  year: 2020
  ident: pone.0318021.ref026
  article-title: A new semi-supervised approach for characterizing the Arabic on-line handwriting of Parkinson’s disease patients
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.07.007
– volume: 26
  start-page: 632
  issue: 4
  year: 2019
  ident: pone.0318021.ref023
  article-title: Velocity-based signal features for the assessment of Parkinsonian handwriting
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2019.2902936
– volume: 82
  start-page: 11923
  issue: 8
  year: 2023
  ident: pone.0318021.ref016
  article-title: A literature review of online handwriting analysis to detect Parkinson’s disease at an early stage
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-13759-2
– volume: 83
  start-page: 11687
  issue: 4
  year: 2024
  ident: pone.0318021.ref029
  article-title: Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-15811-1
– volume: 145
  start-page: 429
  year: 2023
  ident: pone.0318021.ref012
  article-title: Automatic diagnosis of multi-task in essential tremor: Dynamic handwriting analysis using multi-modal fusion neural network
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2023.03.033
– volume: 152
  start-page: 113377
  year: 2020
  ident: pone.0318021.ref046
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2020.113377
– volume: 403
  start-page: 305
  issue: 10423
  year: 2024
  ident: pone.0318021.ref004
  article-title: Medical, surgical, and physical treatments for Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(23)01429-0
– volume: 42
  start-page: 158
  issue: 1
  year: 2022
  ident: pone.0318021.ref011
  article-title: Graphical representation and variability quantification of handwriting signals: New tools for parkinson’s disease detection
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2021.12.007
– volume: 203
  start-page: 117400
  year: 2022
  ident: pone.0318021.ref020
  article-title: A feature fusion sequence learning approach for quantitative analysis of tremor symptoms based on digital handwriting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117400
– volume: 8
  start-page: 119252
  year: 2020
  ident: pone.0318021.ref031
  article-title: Optimized ANFIS model using hybrid metaheuristic algorithms for Parkinson’s disease prediction in IoT environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005614
– volume: 71
  start-page: 102823
  year: 2020
  ident: pone.0318021.ref027
  article-title: Hierarchical learning using deep optimum-path forest
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2020.102823
SSID ssj0053866
Score 2.4715352
Snippet Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed...
Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0318021
SubjectTerms Aged
Algorithms
Biology and Life Sciences
Biomechanical Phenomena
Datasets
Diagnosis
Disease detection
Engineering and Technology
Evaluation
Feature extraction
Fourier transforms
Global optimization
Handwriting
Health aspects
Humans
Information processing
Kinematics
Mathematical optimization
Medicine and Health Sciences
Methods
Movement disorders
Neural networks
Neurodegenerative diseases
Optimization algorithms
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease
Patients
Penmanship
Physical Sciences
Research and Analysis Methods
Signal processing
Statistical analysis
Wavelet transforms
Writing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK-mFDAIqXDI1o4fcY4LoipIgAQU9RYS2ylIq2TV7FLx75mJvVEjKtEDx40n0WbeE3u-IeRFbnH-jccxqVCuQsSwKcR1lirDoWTOCqMsfu_48FEfn8j3p-r00qgvPBMW4IED4w59pZ3LMlvrHOGpaqNVU2ROWKiWufQNel9mim0xFXwwWLHWsVFO5PwwymW-6lo_RzVmGZ8EogGvf_TKs9Wy669KOf8-OXlz066q3xfVcnkpLB3dIbdjPkkX4T12yA3f3iU70WJ7-jLCSr-6R74vaNv98kva-AHMk4JbPg9tDTTMkaYY0hyF3y7Mqaf4Wf0CYY_aMwrZLcUe6aFd7KCncWuHOr8ejnO198nJ0duvb47TOF8htaoQPM2EkrUqmAeJNMrpppDeOcZrXhtIY_PGQgHbMFtUyjU1c0IabXzuc82k1TUXD8isBY7uYud3nonKC2UbLSslamZlbbionIXox1lC0i2zy1WA0SiHvbQcyo_AqRKFU0bhJOQ1SmSkRRDs4QKoRhlVo_yXaiTkKcqzDB2loymXC5PJHCpFIxPyfKBAIIwWT9qcVZu-L999-nYNoi-fJ0QHkajpUHhV7G6Ad0KArQnl_oQSzNlOlndR-7Zc6UvBcUBSoZWCO7caefXys3EZH4qn51rfbSIN5KEG-PowKPDIWQHCh5Q4S4iZqPaE9dOV9uePAYec8xw31eEvz0cruJZ09_6HdB-RWxnOYmagyHKfzNbnG_8YEsR1_WTwBX8AJo5iig
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9ACXivJqoMCCkICDU6_34fUBoRS1KkgUVCjqzbJ31wEpskOcUHHjb_D3-CXM2GuDRYV6THYcxfPYmdmd-YaQJ7HB-TcOx6RCugoewwTg18NAagYpc5RoafC84-2xOjoVb87k2QY57nphsKyy2xObjdpWBs_I9zjDOTGJkvLl4muAU6PwdrUboZH50Qr2RQMxdoVsRoiMNSKb-wfH70-6vRmsWynfQMdjtuflNVlUpZugeocRGzioBse_361Hi3lVXxSK_ltReXVdLrLv59l8_pe7OrxOtnycSaetYmyTDVfeINvekmv6zMNNP79J8iktq29uTgvXgHxS2K6XbbsDbedLU3R1lsJn286vp3jcfo5wSOWMQtRLsXe6aSP79eNnTf2lD7Vu1RR6lbfI6eHBx1dHgZ-8EBiZcBZEXIpcJqEDWRXSqiIRztqQ5SzXEODGhYHUtghNkklb5KHlQivtYherUBiVM36bjErg6Q72hMcRzxyXplAikzwPjcg145k14BdZOCZBx-500QJspM0tWwyJScurFMWTevGMyT7KpKdFeOzmi2o5S721pS5T1kaRyVWMmGa5VrJIIssNSzQTrhiThyjRtO017Y08nepIxJBDajEmjxsKhMgosQZnlq3rOn397tMliD6cDIieeqKiQvFlvu8B3gmhtwaUuwNKMHQzWN5B_eu4Uqd_TAKe7HTy4uVH_TL-KNbVla5aexqIUDXw9U6rwj1nOQgfguVoTPRAuQesH66UXz43COWMxXjdDn950tvBpaR79_8vco9ci3D-cggqKnbJaLVcu_sQFK7yB97SfwP41WJZ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQNI5jxzkuiKogURCwqD2gKH6kVCzZVbNLVQ6Iv8Hf45cwkzgrAkUqB26b9dhKZsaeGY_nMyH3UoP33zi8JhXCVbAYJgC7HgVCMQiZ40wJg_sdL3bk9jh5vit2V8j7rhbGcxBixMm0bjL5-GNauU3PyU3EK2qzpyHjKet6hDMgClFFwWrdbxCHcGdsjgVIZ8iqFOCqD8jqeOfVaK_NNMeBjCPuy-n-NlLPXDWo_su1e4BvdpJj-uf5yrOLalYcHxWTyS_Ga-sC-dp9dntm5WO4mOvQfPkNEfK_8eUiOe_dXjpqR1kjK666RNb8wlLThx79-tFloke0mn52E1q6BnOUgvU4bKsvaHvdNUXLayk82-Oq-HRgKO7-HyE6U7VPwQmnWMrdVLX9-Pa9pj4HRa2bN-fOqitkvPX07ZPtwF8EERiRcRbEXCRaZJED1SmFlWWWOGsjpplW4G-npYFIu4xMVghb6sjyREnlUpfKKDFSM36VDCpgwzqWqKcxLxwXppRJIbiOTKIV44U1YKZZNCRBJ-981uJ95E3SL4U4qeVVjhzNPUeH5DEqxZIW0bqbP0BEuRdN7gppbRwbLVOEWNNKijKLLTcsUyxx5ZDcRpXK29LX5ZqTj1ScpBDSqmRI7jYUiNhR4ZGg_WJR1_mzl-9OQfTmdY_ogScqpyi-wpdhwDehBvUoN3qUsO6YXvM6qmDHlTrnDG9yyqQQ0LObFCc331k246B4zK9y04WnAYdZAV-vtXNoyVkOwgffPR4S1ZtdPdb3W6qDDw1gOmMpZv_hlcPlRDyVdK__a4cb5FyMF0RHoLTJBhnMDxfuJnitc33Lrz0_AX4Fm2A
  priority: 102
  providerName: Unpaywall
Title A novel feature extraction method based on dynamic handwriting for Parkinson’s disease detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39854412
https://www.proquest.com/docview/3159629655
https://www.proquest.com/docview/3159693781
https://pubmed.ncbi.nlm.nih.gov/PMC11760584
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0318021&type=printable
https://doaj.org/article/ea6dd22cb670430b865f92d3c19814ef
http://dx.doi.org/10.1371/journal.pone.0318021
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJ8FeEONrhVEMQho8pIoTO3EeEOqmlYG0Mg2KylNIbKcgVUlpWsb-e-4SJyJik_YSqfG5cs53vjvbdz9CXoUK8W8MwqRCuAoWQzlg111HSAYhsxdJoXC_43QSnEz5x5mYbZEGs9UysLwytEM8qelqMfzz6_IdKPzbCrUhZE2n4bLIzRCF1MXM8m2wVRGCOZzy9lwBtDsIbALddT13yG0fhghugtexVVVJ_3bh7i0XRXmVV_r_5co7m3yZXF4ki8U_lmt8j9y1Licd1TKyS7ZMfp_sWqUu6WtbefrNA_J9RPPit1nQzFT1Pims3Ks684HWUNMUrZ6m8FvXUPYUd94vsDJSPqfgAFNMo64yyg5Kak9_qDbr6sZX_pBMx8dfjk4cC8HgKBH5zPF8wVMRuQY4kgkdZBE3WrssZakETzfMFMS4mauiROgsdbXPZSBNaMLA5SpImf-I9HJg7h4mh4eenxhfqCzgifBTV_FUMj_RCgwkc_vEaZgdL-tKG3F13BZChFJzKsZ5iu089ckhzkhLi3WyqxfFah5btYtNEmjteSoNQixulspAZJGnfcUiybjJ-uQ5zmdcJ5222h6PpMdDCCYl75OXFQXWysjxMs482ZRl_OHT1xsQfT7vEB1YoqzAyUtsAgR8E9bg6lDudyhB41WneQ-lr-FKGfsMMZSiQAjo2Ujk1c0v2mb8U7xgl5tiY2nAVZXA18e1ALecbdShT2RHtDus77bkP39UpcoZC_HcHYY8bLXgRrP75NpRPCU7HmIwuyCdfJ_01quNeQaO4TodkFvhLISnPGL4HL8fkO3D48nZ-aDaahlUawG8m07ORt_-AhVhZmY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFTCoVwQZWug0AGBgINTz-blgFBYqoYuSNCi3Iw9Mw6Vgh3ihCg3foOf4KP4Et6zHYNFhXrp0Z5ny377m3kLIY98jfNvLI5JhXAVLIZ2wK67jgoYhMw8DJTG_Y7DI2_vRL4dquEa-bmqhcG0ypVOLBW1yTXuke8IhnNiQk-pF5OvDk6NwtPV1QiNii327XIBIVvxfPAa6PuY8903x6_2nHqqgKNVKJjDhZKJCl0L35Eq46WhtMa4LGFJAM6bn2oI21JXh7EyaeIaIQMvsL71PVdqL2EC3nuJXJYCdAnIjz9sAjzQHZ5Xl-cJn-3U3NCb5JntofC4nLXMXzkloLEFnck4L85ydP_N11yfZ5N4uYjH47-M4e41crX2Ymm_YrsNsmaz62Sj1hMFfVo3s352gyR9muXf7JimtmwhSsEYTKtiClpNr6ZoSA2Fa7PM4i-nmuJm_gKbLWUjCj41xcrsskjt1_cfBa2PlKixszKNLLtJTi6EArdIJwOcbmLFuc9FbIXSqSdjJRJXyyRgIjYarC5zu8RZoTuaVO07ovIMz4ewp8JVhOSJavJ0yUukSQOLzbfLG_l0FNWyHNnYM4ZznXg-dkxLAk-lITdCszBg0qZdso0UjapK1kaFRP2ASx8i1EB2ycMSAhtwZJjhM4rnRREN3n08B9CH9y2gJzVQmiP54rqqAv4JG3u1ILdakKBGdGt5E_lvhZUi-iNw8OSKJ89eftAs40sxay-z-byGAf83ALzerli4wawA4oMrzrskaDF3C_Xtlez0c9n_nDEfD_Phk3uNHJyLunf-_yPbZH3v-PAgOhgc7d8lVzhOenaBXeUW6cymc3sP3M9Zcr-UeUo-XbSS-Q3_Z5gO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWCBFwQ5dVAoQsCAQcnXq_XjwNCgRI1FAqiFOVm7N11qBTsECdEufEb_Aqfw5cwY68NFhXqpUd7x5Y979mdByEPfInzbzSOSYVwFSyGtMCu25YIGITMThgIifsdbw68vSP31ViMN8jPuhYG0yprnVgqapVL3CPvc4ZzYkJPiH5q0iLe7Q6fzb5aOEEKT1rrcRoVi-zr9QrCt-LpaBdo_dBxhi8_vNizzIQBS4qQM8vhwk1EaGv4plQoLw1drZTNEpYE4Mj5qYQQLrVlGAuVJrbibuAF2te-Z7vSSxiH954j533OQ0wn9MdNsAd6xPNMqR73Wd9wRm-WZ7qHgmQ7rGUKy4kBjV3ozKZ5cZLT-2_u5sVlNovXq3g6_cswDq-Qy8ajpYOKBTfJhs6ukk2jMwr62DS2fnKNJAOa5d_0lKa6bCdKAbvzqrCCVpOsKRpVReFarbP4y7GkuLG_wsZL2YSCf02xSrssWPv1_UdBzfESVXpRppRl18nRmVDgBulkgNMtrD73HR5rLmTqubHgiS3dJGA8VhIsMLO7xKrRHc2qVh5ReZ7nQwhU4SpC8kSGPF3yHGnSwGIj7vJGPp9ERq4jHXtKOY5MPB-7pyWBJ9LQUVyyMGCuTrtkBykaVVWtjTqJBoHj-hCtBm6X3C8hsBlHhmw9iZdFEY3efjwF0OH7FtAjA5TmSL7YVFjAP2GTrxbkdgsSVIpsLW8h_9VYKaI_wgdP1jx58vK9Zhlfihl8mc6XBgZ84QDwerNi4QazHIgPbrnTJUGLuVuob69kx5_LXuiM-XiwD5_ca-TgVNS99f8f2SEXQL1Er0cH-7fJJQeHPtvAre426SzmS30HPNFFcrcUeUo-nbWO-Q1T_5xR
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLy6UMAgxOOQNI5jxzkuiKogURCwqD2gKH6kVCzZVbNLVQ6Iv8Hf45cwkzgrAkUqB26b9dhKZsaeGY_nMyH3UoP33zi8JhXCVbAYJgC7HgVCMQiZ40wJg_sdL3bk9jh5vit2V8j7rhbGcxBixMm0bjL5-GNauU3PyU3EK2qzpyHjKet6hDMgClFFwWrdbxCHcGdsjgVIZ8iqFOCqD8jqeOfVaK_NNMeBjCPuy-n-NlLPXDWo_su1e4BvdpJj-uf5yrOLalYcHxWTyS_Ga-sC-dp9dntm5WO4mOvQfPkNEfK_8eUiOe_dXjpqR1kjK666RNb8wlLThx79-tFloke0mn52E1q6BnOUgvU4bKsvaHvdNUXLayk82-Oq-HRgKO7-HyE6U7VPwQmnWMrdVLX9-Pa9pj4HRa2bN-fOqitkvPX07ZPtwF8EERiRcRbEXCRaZJED1SmFlWWWOGsjpplW4G-npYFIu4xMVghb6sjyREnlUpfKKDFSM36VDCpgwzqWqKcxLxwXppRJIbiOTKIV44U1YKZZNCRBJ-981uJ95E3SL4U4qeVVjhzNPUeH5DEqxZIW0bqbP0BEuRdN7gppbRwbLVOEWNNKijKLLTcsUyxx5ZDcRpXK29LX5ZqTj1ScpBDSqmRI7jYUiNhR4ZGg_WJR1_mzl-9OQfTmdY_ogScqpyi-wpdhwDehBvUoN3qUsO6YXvM6qmDHlTrnDG9yyqQQ0LObFCc331k246B4zK9y04WnAYdZAV-vtXNoyVkOwgffPR4S1ZtdPdb3W6qDDw1gOmMpZv_hlcPlRDyVdK__a4cb5FyMF0RHoLTJBhnMDxfuJnitc33Lrz0_AX4Fm2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+feature+extraction+method+based+on+dynamic+handwriting+for+Parkinson%27s+disease+detection&rft.jtitle=PloS+one&rft.au=Lu%2C+Huimin&rft.au=Qi%2C+Guolian&rft.au=Wu%2C+Dalong&rft.au=Lin%2C+Chenglin&rft.date=2025-01-24&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft.spage=e0318021&rft_id=info:doi/10.1371%2Fjournal.pone.0318021&rft_id=info%3Apmid%2F39854412&rft.externalDocID=39854412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon