A novel feature extraction method based on dynamic handwriting for Parkinson’s disease detection

Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson’s disease. Extracting more discriminative features from handwriting is an important step. Although many f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0318021
Main Authors Lu, Huimin, Qi, Guolian, Wu, Dalong, Lin, Chenglin, Ma, Songzhe, Shi, Yingqi, Xue, Han
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0318021

Cover

More Information
Summary:Parkinson’s disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson’s disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting’s kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method’s effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: NO authors have competing interests.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0318021