基于综合多尺度特征决策树模型的土地利用变化分析
针对当前土地利用变化模型研究中较少考虑多尺度融合的问题,尝试构建综合空间多尺度特征的决策树模型(decision tree model,DTM),并与典型数据挖掘方法模拟效果进行对比。选取1995年、2000年和2005年的南京市土地利用现状为数据源,并以1995年和2000年两期数据为训练样本,以空间剖分的土地利用单位(9.5km2大小的格网单元)为模拟单元,构建综合模拟单元内部特征、邻域特征和全局特征的空间多尺度DTM,利用此模型对2000-2005年南京市土地利用变化进行模拟与分析,同时将该模型与朴素贝叶斯(naive Bayes,NB)、BP神经网络(back propagation...
Saved in:
Published in | 农业工程学报 Vol. 30; no. 17; pp. 259 - 267 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
南京师范大学 虚拟地理环境教育部重点实验室,南京,210023%华中师范大学 城市与环境科学学院,武汉,430079%广东省生态环境与土壤研究所,广州,510650
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.3969/j.issn.1002-6819.2014.17.033 |
Cover
Summary: | 针对当前土地利用变化模型研究中较少考虑多尺度融合的问题,尝试构建综合空间多尺度特征的决策树模型(decision tree model,DTM),并与典型数据挖掘方法模拟效果进行对比。选取1995年、2000年和2005年的南京市土地利用现状为数据源,并以1995年和2000年两期数据为训练样本,以空间剖分的土地利用单位(9.5km2大小的格网单元)为模拟单元,构建综合模拟单元内部特征、邻域特征和全局特征的空间多尺度DTM,利用此模型对2000-2005年南京市土地利用变化进行模拟与分析,同时将该模型与朴素贝叶斯(naive Bayes,NB)、BP神经网络(back propagation neural network,BPNN)和支持向量机(support vector machine,SVM)模型进行模拟精度的对比。结果表明:DTM模拟精度为88.97%,高于NB、BPNN和SVM模型的模拟精度(分别为84.44%、87.13%和83.46%)。本文提出的综合多尺度特征的DTM具有与典型数据挖掘方法相类似或更好的精度,而且还具有运算效率高、可解释性强以及简单易扩展等突出特点,有利于LUCC模型的异地复用和决策支持。 |
---|---|
Bibliography: | land use; models; decision trees; spatial data mining; multi-scale 11-2047/S In present model on land use and land cover change (LUCC) research, the fusion of multiple scales has been less considered. To solve this problem, a decision tree model (DTM) synthesizing multi-scale features was proposed in this paper; additionally, the simulation result was compared to those from the typical data mining methods. Firstly, the space was subdivided to land use unit with appropriate grid cell size of 9.5 km2, which was used as simulation unit, and land use intensity (LUI), landscape shape index (LSI), and dominant land use type (DLT) were selected as inner indices, proportion of construction land (POC) and neighborhood average intensity of land use (NAI) were selected as neighborhood index, and the city-suburb index (CSI) was selected as global index. All the indicators of three scales were used as the property terms of the DTM. Then, taking the multi-scale evaluation indices of land use in Nanjing City, Jiangsu Province |
ISSN: | 1002-6819 |
DOI: | 10.3969/j.issn.1002-6819.2014.17.033 |