基于电功图的抽油机井工况诊断模型

针对目前缺乏典型工况特征的电功图图集而导致电功图资料无法被充分应用、采油生产系统实时工况诊断难等问题,考虑曲柄实际角速度、四连杆的惯性、摩擦等因素,推导基于光杆示功图的电功图计算模型,建立13种油井工况下的典型电功图特征图集和基于特征值的电功图工况诊断模型,并编制工况诊断软件。经现场5口油井功图计算检验,结果表明:实测电功图与计算电功图的上、下冲程功率峰值、功率的极差、平均功率的平均相对误差分别为1.74%、3.89%、2.96%、1.74%。经现场6口油井电功图的工况诊断检验,该井下工况诊断结果与示功图诊断结果一致,表明基于电功图的抽油机井工况诊断模型准确率高,能为抽油机井采油系统智能分析和...

Full description

Saved in:
Bibliographic Details
Published in中国石油大学学报(自然科学版) Vol. 41; no. 2; pp. 108 - 115
Main Author 陈德春 肖良飞 张瑞超 姚亚 彭元东 杨康敏
Format Journal Article
LanguageChinese
Published 中国石油大学石油工程学院,山东青岛,266580%中国石油大学胜利学院油气工程学院,山东东营,257061%河南油田分公司石油工程技术研究院,河南郑州,473000 2017
Subjects
Online AccessGet full text
ISSN1673-5005
DOI10.3969/j.issn.1673-5005.2017.02.013

Cover

More Information
Summary:针对目前缺乏典型工况特征的电功图图集而导致电功图资料无法被充分应用、采油生产系统实时工况诊断难等问题,考虑曲柄实际角速度、四连杆的惯性、摩擦等因素,推导基于光杆示功图的电功图计算模型,建立13种油井工况下的典型电功图特征图集和基于特征值的电功图工况诊断模型,并编制工况诊断软件。经现场5口油井功图计算检验,结果表明:实测电功图与计算电功图的上、下冲程功率峰值、功率的极差、平均功率的平均相对误差分别为1.74%、3.89%、2.96%、1.74%。经现场6口油井电功图的工况诊断检验,该井下工况诊断结果与示功图诊断结果一致,表明基于电功图的抽油机井工况诊断模型准确率高,能为抽油机井采油系统智能分析和优化决策提供技术支持。
Bibliography:CHEN Dechun1,XIAO Liangfei1,ZHANG Ruichao2,YAO Ya1,PENG Yuandong3,YANG Kangmin3(1. School of Petroleum Engineering in China University of Petroleum,,Qingdao 266580,China ;2. College of Petroleum Engineering,Shengli College China University of Petroleum,,Dongying 257061,China ;3. Institute of Petroleum Engineering Technology of Henan Oilfield,Zhengzhou 473000 , China )
37-1441/TE
rod pumping well ; electrical diagrams ; working condition diagnosis ; characteristic value
The real-time diagnosis on the working conditions of oil production well system can be carried out based on the e-lectrical diagram data of oil pumps, in which the characteristics of the electrical diagram at typical working conditions should be understood. In this paper, a mathematical model transforming the mechanical work diagram of the pump rod to electrical diagrams was derived in consideration of various factors, including the actual angular velocity of the crank, the inertia and friction of the four bar linkage. A diagnostic model and softw
ISSN:1673-5005
DOI:10.3969/j.issn.1673-5005.2017.02.013