轴流泵叶片设计协同优化算法

为满足轴流泵叶片的水力和结构性能,对轴流泵叶片采用基于i S I G H T的多学科设计优化。在确立叶栅稠密度及其沿展向变化规律、轮毂比和厚度比作为设计变量的基础上,建立了轴流泵叶片多学科协同优化模型,提出了协同优化算法在轴流泵叶片多学科设计优化过程中的改进方法,系统级采用约束松弛法,子系统级采用响应面法。经实例运行,证实了基于约束松弛的协同优化算法能够很好地解决轴流泵泵叶片设计中2个学科的耦合以及数据量大和数据关系复杂的问题。同时约束松弛法的引入又使得协同优化的计算收敛更快,可靠性更高。通过模型泵试验证实了多学科设计优化提高了轴流泵叶片的综合性能,可有效兼顾高效、轻量化的要求。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 17; pp. 93 - 100
Main Author 石丽建 汤方平 雷翠翠 杨华 杨帆
Format Journal Article
LanguageChinese
Published 扬州大学水利与能源动力工程学院,扬州,225100%上海市城市建设设计研究总院,上海,200125 2014
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.17.013

Cover

More Information
Summary:为满足轴流泵叶片的水力和结构性能,对轴流泵叶片采用基于i S I G H T的多学科设计优化。在确立叶栅稠密度及其沿展向变化规律、轮毂比和厚度比作为设计变量的基础上,建立了轴流泵叶片多学科协同优化模型,提出了协同优化算法在轴流泵叶片多学科设计优化过程中的改进方法,系统级采用约束松弛法,子系统级采用响应面法。经实例运行,证实了基于约束松弛的协同优化算法能够很好地解决轴流泵泵叶片设计中2个学科的耦合以及数据量大和数据关系复杂的问题。同时约束松弛法的引入又使得协同优化的计算收敛更快,可靠性更高。通过模型泵试验证实了多学科设计优化提高了轴流泵叶片的综合性能,可有效兼顾高效、轻量化的要求。
Bibliography:11-2047/S
In this thesis, collaborative optimization algorithm is applied to the multidisciplinary design optimization of axial-flow pump blades. Collaborative optimization algorithm being a kind of multidisciplinary design optimization has developed rapidly in recent years, and is popular among experts at home and abroad because of its special advantages. First, the main design variables which influence the hydraulic performance and structural strength simultaneously were referred to. Besides, the thesis described collaborative optimization algorithm that is used for complex engineering systems to optimize the design. The computing framework of collaborative optimization algorithm could also be found in this thesis. Moreover, the advantages and disadvantages of the collaborative optimization algorithm were also analyzed. In the part of the system-level mathematical model of collaborative optimization, the surface response method and constraint relaxing method were introduced, which changed equality constraint
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.17.013