泡沫钢的制备及三点弯曲性能

为了制备孔隙率较高、孔结构均匀、性能优良的泡沫钢板及夹芯复合板,以316L不锈钢粉为原料,CaCl2为造孔剂,采用粉末冶金烧结-溶解法制备不同孔隙率、孔径的泡沫钢,并用物理粘接法制备泡沫钢夹芯复合板。通过对泡沫钢板和夹芯复合板进行三点弯曲实验研究两者的抗弯曲性能。观察泡沫钢板的三点弯曲变形过程,分析孔隙率和孔径对泡沫钢板和夹芯复合板抗弯曲性能的影响,对比两者的极限抗弯载荷变化。结果表明:泡沫钢板的变形首先从薄壁不规则的孔壁开始,形成裂纹并进行扩展,最终导致宏观断裂;对于泡沫钢夹芯复合板,当孔隙率从69.4%增加至82.5%时,其所能承受的极限载荷从2345N下降至1254N,在相同孔隙率下,相...

Full description

Saved in:
Bibliographic Details
Published in航空材料学报 Vol. 37; no. 4; pp. 77 - 83
Main Author 孙亚东 周芸 郭坤山 杨一群 李和汀 左孝青
Format Journal Article
LanguageChinese
Published 昆明理工大学 材料科学与工程学院,昆明,650093 2017
Subjects
Online AccessGet full text
ISSN1005-5053
DOI10.11868/j.issn.1005-5053.2016.000216

Cover

More Information
Summary:为了制备孔隙率较高、孔结构均匀、性能优良的泡沫钢板及夹芯复合板,以316L不锈钢粉为原料,CaCl2为造孔剂,采用粉末冶金烧结-溶解法制备不同孔隙率、孔径的泡沫钢,并用物理粘接法制备泡沫钢夹芯复合板。通过对泡沫钢板和夹芯复合板进行三点弯曲实验研究两者的抗弯曲性能。观察泡沫钢板的三点弯曲变形过程,分析孔隙率和孔径对泡沫钢板和夹芯复合板抗弯曲性能的影响,对比两者的极限抗弯载荷变化。结果表明:泡沫钢板的变形首先从薄壁不规则的孔壁开始,形成裂纹并进行扩展,最终导致宏观断裂;对于泡沫钢夹芯复合板,当孔隙率从69.4%增加至82.5%时,其所能承受的极限载荷从2345N下降至1254N,在相同孔隙率下,相比于泡沫钢板,夹芯板承受的极限弯曲载荷提升了15%~43%;当孔径从1.9mm增加至3.9mm,孔隙率约为73%时,其所能承受的极限弯曲载荷从2070N下降至1528N,与泡沫钢板相比,相同孔径下,夹芯板承受的极限弯曲载荷提升了15%~28%;在孔隙率和孔径相同条件下,泡沫钢夹芯复合板的抗弯承载能力比泡沫钢板提高15%以上。
Bibliography:316L stainless steel;pore forming agent;steel foam;steel foam-sandwich panels; three-point bending
SUN Yadong, ZHOU Yun, GUO Kunshan, YANG Yiqun, LI Heting, ZUO Xiaoqing(Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093 ,China)
In order to fabricate steel foams with high porosity,uniform pore structure and high-performance, steel foams with different porosities and cell sizes were fabricated by a sintering-dissolution process using 316L stainless steel powder as raw material and CaCl2 as pore forming agent, and steel foam-sandwich panels were fabricated by physical bonding. Three-point bending tests were carried out to explore the bending performance of steel foam and steel foam-sandwich panels . The influence of the porosity and cell size of foam sample on the bending load was analyzed and discussed, and the bending strength of steel foam -sandwich panel was compared with steel foam sample. The results show that the bending deformation of steel foam is sta
ISSN:1005-5053
DOI:10.11868/j.issn.1005-5053.2016.000216