基于OS-ELM的风速修正及短期风电功率预测

随着时间的推移,风电场风电功率预测模型的适用性逐渐降低,导致预测精度下降。为了解决该问题,基于在线序列-极限学习机(OS-ELM)算法提出了风电场短期风电功率预测模型的在线更新策略,建立的OS-ELM模型将风电场的历史数据固化到隐含层输出矩阵中,模型更新时,只需将新产生的数据对当前网络进行更新,大大降低了计算所需的资源。采用极限学习机(ELM)算法对数值天气预报(NWP)的预测风速进行修正,并根据风电功率的置信区间对预测功率进行二次修正。实验结果表明,采用OS-ELM算法更新后的模型适用性增强,预测精度提高;采用基于风电功率置信区间的功率修正模型后,风电功率的预测精度明显提高。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 42; no. 2; pp. 110 - 113
Main Author 张颖超 肖寅 邓华 王璐
Format Journal Article
LanguageChinese
Published 南京信息工程大学信息与控制学院,江苏南京210044 2016
江苏省大数据分析技术重点实验室,江苏南京210044%南京信息工程大学信息与控制学院,江苏南京,210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏南京,210044
南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏南京210044
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.16157/j.issn.0258-7998.2016.02.030

Cover

More Information
Summary:随着时间的推移,风电场风电功率预测模型的适用性逐渐降低,导致预测精度下降。为了解决该问题,基于在线序列-极限学习机(OS-ELM)算法提出了风电场短期风电功率预测模型的在线更新策略,建立的OS-ELM模型将风电场的历史数据固化到隐含层输出矩阵中,模型更新时,只需将新产生的数据对当前网络进行更新,大大降低了计算所需的资源。采用极限学习机(ELM)算法对数值天气预报(NWP)的预测风速进行修正,并根据风电功率的置信区间对预测功率进行二次修正。实验结果表明,采用OS-ELM算法更新后的模型适用性增强,预测精度提高;采用基于风电功率置信区间的功率修正模型后,风电功率的预测精度明显提高。
Bibliography:online sequential-Extreme Learning Machine(OS-ELM); numerical weather prediction(NWP); wind speed correction; wind power correction
As time goes on, the applicability of the wind power prediction model is gradually reduced, which causes decline of prediction accuracy. To solve this problem, online update strategy of short- term wind power prediction model is proposed in this paper based on online sequential- Extreme Learning Machine( OS- ELM) algorithm, OS- ELM model established solidify the historical data of wind farm to the implied layer output matrix, and when updating model, simply use new produced data to update current network, which greatly reduces the resources required for the calculation. Extreme Learning Machine( ELM) is used to correct predicted wind speed of numerical weather prediction( NWP) and make secondary correction for the predicted power based on wind power and confidence intervals. Experimental results show that the applicability of updated model by OS- ELM is enhanced, and the predictio
ISSN:0258-7998
DOI:10.16157/j.issn.0258-7998.2016.02.030