执行器饱和的分段齐次Markov跳变系统的镇定

研究一类带有执行器饱和的Markov跳变系统的镇定问题,转移概率是分段齐次的.首先,通过建立合适的Lyapunov泛函,运用椭球不变集估计系统均方意义的吸引域,得到由线性矩阵不等式约束的闭环系统随机稳定的充分条件.然后,通过求解凸优化问题得到状态反馈控制器增益及均方意义下吸引域的最大估计值.最后,数值算例验证了所得结论的有效性....

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 38; no. 4; pp. 462 - 466
Main Author 齐文海 李新 高宪文
Format Journal Article
LanguageChinese
Published 东北大学信息科学与工程学院,辽宁 沈阳,110819 2017
Subjects
Online AccessGet full text
ISSN1005-3026
DOI10.3969/j.issn.1005-3026.2017.04.002

Cover

More Information
Summary:研究一类带有执行器饱和的Markov跳变系统的镇定问题,转移概率是分段齐次的.首先,通过建立合适的Lyapunov泛函,运用椭球不变集估计系统均方意义的吸引域,得到由线性矩阵不等式约束的闭环系统随机稳定的充分条件.然后,通过求解凸优化问题得到状态反馈控制器增益及均方意义下吸引域的最大估计值.最后,数值算例验证了所得结论的有效性.
Bibliography:actuator saturation; Markov jump systems; piecewise homogeneous; linear matrix inequalities; convex optimization
21-1344/T
QI Wen- hai,LI Xin,GAO Xian-wen(School of Information Science & Engineering,Northeastern University,Shenyang 110819, China)
The stabilization problem was studied for are a class of Markov jump linear systems subject saturation,whose Firstly,by actuator transition rates piecewise homogeneous.theory,the to using appropriate system Lyapunov mean functional sense and ellipsoidal invariant the set attraction domain of in square was estimated to get sufficient conditions with constraints of linear Then,a convex mean matrix inequalities the for the closed-loop systems.optimization problem was solved to get maximum domain of attraction in square verified sense by and the state feedback controller Finally,the gain.effectiveness of the results was a numerical example.
ISSN:1005-3026
DOI:10.3969/j.issn.1005-3026.2017.04.002