基于改进微粒群法和有限元法的混凝土温控方案优化
对于大体积混凝土最优温控方案的选取,传统方法是按照规范的要求和人工反复修改方案,存在效率低下和受限于经验的问题。该文采用改进的微粒群算法(PSO,particle swarm optimization)优化方法,以及基于有限元(FEM,finite element method)的混凝土温度场和应力场仿真算法联合进行优化。算例设定了2个优化目标,即只考虑安全性的单目标优化(多特征点达到最小防裂安全系数1.8),以及考虑安全性和经济性的双目标优化(温控综合成本最小化)。计算结果表明,所提方法能够实现温控方案的自动寻优,优化结果更科学合理,总体研究效率可提高50%以上。考虑双目标优化后,在确保防裂...
Saved in:
| Published in | 农业工程学报 Vol. 30; no. 16; pp. 75 - 83 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
广州市水务局,广州 510640%淮安市水利局,淮安,223005
2014
河海大学水利水电学院,南京,210098%河海大学水利水电学院,南京 210098 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2014.16.011 |
Cover
| Summary: | 对于大体积混凝土最优温控方案的选取,传统方法是按照规范的要求和人工反复修改方案,存在效率低下和受限于经验的问题。该文采用改进的微粒群算法(PSO,particle swarm optimization)优化方法,以及基于有限元(FEM,finite element method)的混凝土温度场和应力场仿真算法联合进行优化。算例设定了2个优化目标,即只考虑安全性的单目标优化(多特征点达到最小防裂安全系数1.8),以及考虑安全性和经济性的双目标优化(温控综合成本最小化)。计算结果表明,所提方法能够实现温控方案的自动寻优,优化结果更科学合理,总体研究效率可提高50%以上。考虑双目标优化后,在确保防裂安全的条件下能够明显降低温控措施的综合成本。 |
|---|---|
| Bibliography: | 11-2047/S Qiang Sheng, Zheng Weizhong, Zhang Yongqiang, Liu Lianjian (1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; 2. Water Conservancy Bureau of Guangzhou, Guangzhou 510640, China; 3. Water Conservancy Bureau of Huai'an, Huai'an 223005, China) concretes;finite element method;temperature control;particle swarm optimization;simulation For the selection of temperature control measures for massive concrete, traditional methods are fully in accordance with the industry standard requirements and subject to repeated artificial amending by practical experience in engineering design and construction. Therefore, it is inefficient and limited by the designer's experience. In this paper, an improved particle swarm optimization (PSO) combined with concrete temperature field and stress field based on the finite element method (FEM) was tested to select the optimal concrete temperature control measures. In the simulation cases, two optimization objectives were define |
| ISSN: | 1002-6819 |
| DOI: | 10.3969/j.issn.1002-6819.2014.16.011 |