Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2
The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 38; no. 1; pp. 176 - 186 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.01.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1074-7613 1097-4180 1097-4180 |
DOI | 10.1016/j.immuni.2012.11.011 |
Cover
Abstract | The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.
► mAbs recognize HIV-1 envelope V2 region that is a site of vaccine-induce immune pressure ► The V2 antibodies target the regions shared partially with broad neutralizing HIV-1 mAbs ► Vaccine-induced V2 antibodies share a light chain signature that is critical for binding ► V2 antibodies bind to field HIV-1 isolate Envs expressed on CD4+ infected T cells |
---|---|
AbstractList | The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. ► mAbs recognize HIV-1 envelope V2 region that is a site of vaccine-induce immune pressure ► The V2 antibodies target the regions shared partially with broad neutralizing HIV-1 mAbs ► Vaccine-induced V2 antibodies share a light chain signature that is critical for binding ► V2 antibodies bind to field HIV-1 isolate Envs expressed on CD4+ infected T cells The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4+T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the β strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, that correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1–V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field isolate HIV-1-infected CD4 + T cells. Crystal structures of two of the V2 antibodies demonstrated residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the beta strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the beta strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options. |
Author | Chen, Xi Dai, Kaifan Nitayaphan, Sorachai Kim, Jerome H. Ferrari, Guido Rao, Mangala Kepler, Thomas B. Liu, Pinghuang Pancera, Marie Kwong, Peter D. Pollara, Justin Hwang, Kwan-Ki Zolla-Pazner, Susan Rerks-Ngarm, Supachai Liao, Hua-Xin Alam, S. Munir Letvin, Norman L. Tsao, Chun-Yen Nicely, Nathan I. Gorman, Jason Kaewkungwal, Jaranit Nabel, Gary J. Tartaglia, James Lu, Xiaozhi Karasavvas, Nicos Pitisuttithum, Punnee Michael, Nelson L. Bonsignori, Mattia Tomaras, Georgia D. Mascola, John R. Kozink, Daniel M. Haynes, Barton F. Parks, Robert J. Pinter, Abraham Moody, M. Anthony Santra, Sampa Montefiori, David C. Wiehe, Kevin Sinangil, Faruk McLellan, Jason S. Peachman, Kristina K. Yang, Zhi-Yong |
AuthorAffiliation | 11 Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 3 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 5 Department of Retrovirology, US Army Medical Component, AFRIMS, Bangkok, Thailand 9 Sanofi Pasteur, Swiftwater, PA 6 Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand 14 Department of Pathology, New York University School of Medicine, New York, NY 10016 2 Vaccine Research Center/NIH, Bethesda, MD 20892 8 Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand 1 Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710 4 Beth Israel Deaconess Medical Center 7 , Harvard Medical School, Boston, MA02215 13 Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010 10 Global Solutions for Infectious Diseases, South San Francisco. CA 94080 12 Public Health Research Institute Center, UMDNJ - New Jersey Medical School, Newark, N |
AuthorAffiliation_xml | – name: 3 U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910 – name: 14 Department of Pathology, New York University School of Medicine, New York, NY 10016 – name: 5 Department of Retrovirology, US Army Medical Component, AFRIMS, Bangkok, Thailand – name: 10 Global Solutions for Infectious Diseases, South San Francisco. CA 94080 – name: 12 Public Health Research Institute Center, UMDNJ - New Jersey Medical School, Newark, NJ 07103 – name: 13 Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010 – name: 7 Center of Excellence for Biomedical and Public Health Informatics BIOPHICS, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand – name: 1 Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710 – name: 6 Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand – name: 9 Sanofi Pasteur, Swiftwater, PA – name: 4 Beth Israel Deaconess Medical Center 7 , Harvard Medical School, Boston, MA02215 – name: 8 Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand – name: 11 Department of Microbiology, Boston University School of Medicine, Boston, MA 02118 – name: 2 Vaccine Research Center/NIH, Bethesda, MD 20892 |
Author_xml | – sequence: 1 givenname: Hua-Xin surname: Liao fullname: Liao, Hua-Xin email: hliao@duke.edu organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 2 givenname: Mattia surname: Bonsignori fullname: Bonsignori, Mattia organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 3 givenname: S. Munir surname: Alam fullname: Alam, S. Munir organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 4 givenname: Jason S. surname: McLellan fullname: McLellan, Jason S. organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 5 givenname: Georgia D. surname: Tomaras fullname: Tomaras, Georgia D. organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 6 givenname: M. Anthony surname: Moody fullname: Moody, M. Anthony organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 7 givenname: Daniel M. surname: Kozink fullname: Kozink, Daniel M. organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 8 givenname: Kwan-Ki surname: Hwang fullname: Hwang, Kwan-Ki organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 9 givenname: Xi surname: Chen fullname: Chen, Xi organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 10 givenname: Chun-Yen surname: Tsao fullname: Tsao, Chun-Yen organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 11 givenname: Pinghuang surname: Liu fullname: Liu, Pinghuang organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 12 givenname: Xiaozhi surname: Lu fullname: Lu, Xiaozhi organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 13 givenname: Robert J. surname: Parks fullname: Parks, Robert J. organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 14 givenname: David C. surname: Montefiori fullname: Montefiori, David C. organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 15 givenname: Guido surname: Ferrari fullname: Ferrari, Guido organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 16 givenname: Justin surname: Pollara fullname: Pollara, Justin organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 17 givenname: Mangala surname: Rao fullname: Rao, Mangala organization: U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA – sequence: 18 givenname: Kristina K. surname: Peachman fullname: Peachman, Kristina K. organization: U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA – sequence: 19 givenname: Sampa surname: Santra fullname: Santra, Sampa organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 20 givenname: Norman L. surname: Letvin fullname: Letvin, Norman L. organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 21 givenname: Nicos surname: Karasavvas fullname: Karasavvas, Nicos organization: Department of Retrovirology, U.S. Army Medical Component, AFRIMS, Bangkok 10400, Thailand – sequence: 22 givenname: Zhi-Yong surname: Yang fullname: Yang, Zhi-Yong organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 23 givenname: Kaifan surname: Dai fullname: Dai, Kaifan organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 24 givenname: Marie surname: Pancera fullname: Pancera, Marie organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 25 givenname: Jason surname: Gorman fullname: Gorman, Jason organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 26 givenname: Kevin surname: Wiehe fullname: Wiehe, Kevin organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 27 givenname: Nathan I. surname: Nicely fullname: Nicely, Nathan I. organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA – sequence: 28 givenname: Supachai surname: Rerks-Ngarm fullname: Rerks-Ngarm, Supachai organization: Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand – sequence: 29 givenname: Sorachai surname: Nitayaphan fullname: Nitayaphan, Sorachai organization: Department of Retrovirology, U.S. Army Medical Component, AFRIMS, Bangkok 10400, Thailand – sequence: 30 givenname: Jaranit surname: Kaewkungwal fullname: Kaewkungwal, Jaranit organization: Center of Excellence for Biomedical and Public Health Informatics BIOPHICS, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand – sequence: 31 givenname: Punnee surname: Pitisuttithum fullname: Pitisuttithum, Punnee organization: Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand – sequence: 32 givenname: James surname: Tartaglia fullname: Tartaglia, James organization: Sanofi Pasteur, Swiftwater, PA 18370, USA – sequence: 33 givenname: Faruk surname: Sinangil fullname: Sinangil, Faruk organization: Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA – sequence: 34 givenname: Jerome H. surname: Kim fullname: Kim, Jerome H. organization: U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA – sequence: 35 givenname: Nelson L. surname: Michael fullname: Michael, Nelson L. organization: U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA – sequence: 36 givenname: Thomas B. surname: Kepler fullname: Kepler, Thomas B. organization: Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA – sequence: 37 givenname: Peter D. surname: Kwong fullname: Kwong, Peter D. organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 38 givenname: John R. surname: Mascola fullname: Mascola, John R. organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 39 givenname: Gary J. surname: Nabel fullname: Nabel, Gary J. organization: Vaccine Research Center/NIH, Bethesda, MD 20892, USA – sequence: 40 givenname: Abraham surname: Pinter fullname: Pinter, Abraham organization: Public Health Research Institute Center, UMDNJ - New Jersey Medical School, Newark, NJ 07103, USA – sequence: 41 givenname: Susan surname: Zolla-Pazner fullname: Zolla-Pazner, Susan organization: Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA – sequence: 42 givenname: Barton F. surname: Haynes fullname: Haynes, Barton F. email: hayne002@mc.duke.edu organization: Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23313589$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVAR_YB_gJAlLr0keOI4iTkgVVVhV6oEorBXy3Fmt15l7cV2FvV38IdxulsEPdCTLc97z2_ezGl2ZJ3FLHsNtAAK9bt1YTab0ZqipFAWAAUFeJadABVNXkFLj6Z7U-VNDew4Ow1hTSlUXNAX2XHJGDDeipPs10JpbSySue1HHY2zxC3JhY2mc73BQNRKGRsiUeQm-oQYvRqGOzLDiN6t0KIbA7kxESfefHKE5IvHEEaP5KeJt8aS2XyRA7myOxzcdiq7iOl5obxR3YDkK67Sx4EAUbYn5cvs-VINAV8dzrPs-8erb5ez_Przp_nlxXWuUxcxb6Hqead6rWrgPW161VNRatYpAV3VtbUWHecihbCkqtOolWq7thGMYb1UdcXOsg973e3YbbDXaGNqTm692Sh_J50y8t-KNbdy5XaS8Vo0jCeB84OAdz9GDFFuTNA4DOo-FgmcV4LzlrGnoWVbckjmJltvH0HXbvQ2JZEEWS0YFfeCb_42_8f1w2gT4P0eoL0LweNSahPVNOHUixkkUDntkVzL_R7JaY8kgEx7lMjVI_KD_hO0Q6KYxrYz6GXQBq3G3njUUfbO_F_gN5HO5e0 |
CitedBy_id | crossref_primary_10_1073_pnas_2011501117 crossref_primary_10_1016_j_omtm_2019_06_002 crossref_primary_10_1097_COH_0000000000000551 crossref_primary_10_1097_COH_0b013e328361cfe8 crossref_primary_10_1128_JVI_00594_20 crossref_primary_10_1038_s41598_017_05594_5 crossref_primary_10_1111_imr_12501 crossref_primary_10_1038_s41598_021_93702_x crossref_primary_10_1073_pnas_1409954111 crossref_primary_10_1002_cyto_a_23348 crossref_primary_10_1016_j_immuni_2013_01_003 crossref_primary_10_1371_journal_ppat_1005431 crossref_primary_10_1111_imr_12067 crossref_primary_10_3390_cells13010033 crossref_primary_10_1016_j_virol_2016_02_019 crossref_primary_10_1080_21645515_2020_1787070 crossref_primary_10_1128_JVI_01031_14 crossref_primary_10_1038_ni_3158 crossref_primary_10_1186_s12977_018_0406_5 crossref_primary_10_1089_mab_2016_0014 crossref_primary_10_1371_journal_pone_0194266 crossref_primary_10_1038_s41541_021_00307_6 crossref_primary_10_1016_j_nano_2020_102255 crossref_primary_10_3389_fimmu_2022_914969 crossref_primary_10_1371_journal_pone_0197656 crossref_primary_10_1038_nature12053 crossref_primary_10_1038_s41598_018_24268_4 crossref_primary_10_1007_s00251_015_0890_x crossref_primary_10_1128_JVI_01403_16 crossref_primary_10_1128_JVI_00754_15 crossref_primary_10_1016_j_celrep_2023_112255 crossref_primary_10_1016_j_ebiom_2015_07_019 crossref_primary_10_1080_14760584_2019_1640117 crossref_primary_10_1371_journal_ppat_1006182 crossref_primary_10_1126_scitranslmed_aai7521 crossref_primary_10_1016_j_ebiom_2014_10_022 crossref_primary_10_3389_fimmu_2021_708227 crossref_primary_10_1371_journal_ppat_1007278 crossref_primary_10_3389_fimmu_2019_01062 crossref_primary_10_2222_jsv_63_219 crossref_primary_10_1016_j_isci_2021_102047 crossref_primary_10_1016_j_vaccine_2014_12_009 crossref_primary_10_1128_JVI_01193_20 crossref_primary_10_1128_mBio_00208_20 crossref_primary_10_1038_mt_2016_123 crossref_primary_10_1586_14760584_2014_951335 crossref_primary_10_1093_infdis_jiu003 crossref_primary_10_4049_jimmunol_1601197 crossref_primary_10_1016_j_omtn_2019_03_003 crossref_primary_10_1016_j_jaci_2014_04_013 crossref_primary_10_1371_journal_pcbi_1005094 crossref_primary_10_1038_s41467_019_08415_7 crossref_primary_10_1016_j_immuni_2014_11_014 crossref_primary_10_1128_JVI_00783_15 crossref_primary_10_1128_JVI_01409_16 crossref_primary_10_1177_1176934319831308 crossref_primary_10_1016_j_amepre_2015_09_004 crossref_primary_10_3390_v10040167 crossref_primary_10_1111_febs_15814 crossref_primary_10_1371_journal_ppat_1007944 crossref_primary_10_3390_microorganisms8101490 crossref_primary_10_1128_JVI_03309_13 crossref_primary_10_1128_JVI_01531_15 crossref_primary_10_3389_fimmu_2023_1139402 crossref_primary_10_1016_j_coi_2016_05_011 crossref_primary_10_1186_s12977_016_0285_6 crossref_primary_10_1093_infdis_jiw555 crossref_primary_10_3389_fimmu_2020_01274 crossref_primary_10_1126_sciimmunol_abb1025 crossref_primary_10_1038_ncomms12131 crossref_primary_10_1172_JCI135557 crossref_primary_10_3389_fpls_2019_01378 crossref_primary_10_1371_journal_ppat_1004552 crossref_primary_10_1016_j_jaci_2014_04_025 crossref_primary_10_1128_JVI_00410_17 crossref_primary_10_1016_j_coi_2016_05_013 crossref_primary_10_1126_scitranslmed_aab4005 crossref_primary_10_15252_emmm_201404005 crossref_primary_10_1038_s41598_017_18863_0 crossref_primary_10_1128_JVI_00629_19 crossref_primary_10_3390_v7102881 crossref_primary_10_1126_scitranslmed_aaf0618 crossref_primary_10_3390_vaccines9020112 crossref_primary_10_1371_journal_pone_0180720 crossref_primary_10_1371_journal_pbio_1002372 crossref_primary_10_1016_j_coi_2015_05_007 crossref_primary_10_1016_j_immuni_2017_04_011 crossref_primary_10_1038_s41467_024_54753_6 crossref_primary_10_1146_annurev_immunol_080219_023629 crossref_primary_10_1371_journal_ppat_1011860 crossref_primary_10_1128_JVI_01843_17 crossref_primary_10_3390_vaccines10020187 crossref_primary_10_1016_j_ebiom_2015_06_016 crossref_primary_10_1172_JCI126391 crossref_primary_10_1371_journal_pone_0153484 crossref_primary_10_1128_JVI_00481_16 crossref_primary_10_1186_s12977_014_0075_y crossref_primary_10_1128_JVI_00475_17 crossref_primary_10_1126_scitranslmed_aac7732 crossref_primary_10_1038_nature12893 crossref_primary_10_1111_imr_12098 crossref_primary_10_4049_jimmunol_1601640 crossref_primary_10_1016_j_immuni_2017_04_021 crossref_primary_10_1128_JVI_01216_17 crossref_primary_10_3389_fimmu_2021_678511 crossref_primary_10_1097_QAI_0b013e31829a3985 crossref_primary_10_1371_journal_pone_0161753 crossref_primary_10_1097_COH_0000000000000053 crossref_primary_10_1016_j_celrep_2019_06_074 crossref_primary_10_1097_COH_0000000000000055 crossref_primary_10_1038_s41541_023_00775_y crossref_primary_10_1128_JVI_00652_15 crossref_primary_10_4161_hv_28462 crossref_primary_10_1089_aid_2020_0299 crossref_primary_10_1097_TP_0000000000002369 crossref_primary_10_1073_pnas_1314718111 crossref_primary_10_3390_vaccines2010015 crossref_primary_10_1371_journal_pone_0108446 crossref_primary_10_1016_j_vaccine_2020_03_010 crossref_primary_10_1038_embor_2013_146 crossref_primary_10_1128_JVI_01221_14 crossref_primary_10_1056_NEJMoa1310566 crossref_primary_10_1038_mi_2015_145 crossref_primary_10_1016_j_molimm_2016_07_003 crossref_primary_10_1371_journal_pone_0143895 crossref_primary_10_1016_j_vaccine_2020_10_058 crossref_primary_10_3390_v9060135 crossref_primary_10_1097_COH_0b013e328362db2b crossref_primary_10_1097_COH_0000000000000057 crossref_primary_10_1016_j_virol_2017_04_008 crossref_primary_10_1586_14760584_2015_1027690 crossref_primary_10_1038_s41467_020_14670_w crossref_primary_10_1128_JVI_03424_12 crossref_primary_10_1186_s12977_018_0429_y crossref_primary_10_1016_j_chom_2018_04_018 crossref_primary_10_1089_aid_2019_0239 crossref_primary_10_3390_vaccines2010001 crossref_primary_10_1097_COH_0000000000000060 crossref_primary_10_3390_vaccines9090975 crossref_primary_10_1016_j_jim_2013_05_007 crossref_primary_10_1111_imr_12509 crossref_primary_10_1128_JVI_01535_13 crossref_primary_10_1016_j_virol_2017_10_013 crossref_primary_10_1038_mi_2015_70 crossref_primary_10_1111_imr_12513 crossref_primary_10_4049_jimmunol_1500122 crossref_primary_10_1111_imr_12514 crossref_primary_10_1111_imr_12510 crossref_primary_10_1038_s41467_022_28450_1 crossref_primary_10_1111_imr_12075 crossref_primary_10_1128_JVI_01552_17 crossref_primary_10_1073_pnas_1403278111 crossref_primary_10_1016_j_xcrm_2020_100015 crossref_primary_10_1371_journal_ppat_1005042 crossref_primary_10_1128_JVI_00156_14 crossref_primary_10_1128_JVI_01005_17 crossref_primary_10_1128_JVI_02325_16 crossref_primary_10_1371_journal_pone_0157353 crossref_primary_10_1172_jci_insight_131437 crossref_primary_10_1128_mbio_03370_22 crossref_primary_10_1128_JVI_00837_13 crossref_primary_10_1371_journal_pone_0145249 crossref_primary_10_1038_s41467_017_01336_3 crossref_primary_10_1128_JVI_01596_16 crossref_primary_10_1074_jbc_M116_725614 crossref_primary_10_1097_COH_0b013e328363a90e crossref_primary_10_3390_vaccines13020133 crossref_primary_10_1073_pnas_1317855110 crossref_primary_10_1093_protein_gzy010 crossref_primary_10_1172_JCI75539 crossref_primary_10_3389_fimmu_2018_02313 crossref_primary_10_1016_j_coviro_2016_02_010 crossref_primary_10_1371_journal_pone_0094002 crossref_primary_10_1089_vim_2017_0144 crossref_primary_10_1128_JVI_01458_16 crossref_primary_10_1128_JVI_03090_15 crossref_primary_10_1186_s40478_018_0543_z crossref_primary_10_1128_JVI_00934_19 crossref_primary_10_1128_JVI_03153_13 crossref_primary_10_1089_biores_2013_0009 crossref_primary_10_3390_v11060487 crossref_primary_10_1016_j_jim_2016_03_002 crossref_primary_10_1073_pnas_1307336110 crossref_primary_10_1128_JVI_02452_16 crossref_primary_10_1371_journal_ppat_1005817 crossref_primary_10_1038_s41467_018_06794_x crossref_primary_10_1371_journal_ppat_1005815 crossref_primary_10_1128_JVI_02297_12 crossref_primary_10_7554_eLife_13783 crossref_primary_10_7554_eLife_92379 crossref_primary_10_1371_journal_pone_0173705 crossref_primary_10_1128_JVI_01120_19 crossref_primary_10_1128_JVI_02125_14 crossref_primary_10_1371_journal_ppat_1009185 crossref_primary_10_1097_QAI_0000000000001094 crossref_primary_10_1016_j_sbi_2013_03_007 crossref_primary_10_1155_2015_594109 crossref_primary_10_4049_jimmunol_1302829 crossref_primary_10_1038_s41598_020_57491_z crossref_primary_10_1016_j_vaccine_2013_08_066 crossref_primary_10_1093_infdis_jiu522 crossref_primary_10_3390_v16060972 crossref_primary_10_1016_j_ebiom_2016_11_024 crossref_primary_10_1371_journal_ppat_1003754 crossref_primary_10_1371_journal_pone_0070859 crossref_primary_10_1128_JVI_03765_13 crossref_primary_10_1186_1742_4690_10_162 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_3389_fimmu_2017_00149 crossref_primary_10_1097_COH_0b013e3283632c26 crossref_primary_10_1172_jci_insight_94355 crossref_primary_10_1016_j_virol_2024_110158 crossref_primary_10_3389_fimmu_2021_656894 crossref_primary_10_3390_v14040808 crossref_primary_10_1016_j_coviro_2016_01_007 crossref_primary_10_1371_journal_pcbi_1003973 crossref_primary_10_3934_Allergy_2018_3_113 crossref_primary_10_1016_j_ebiom_2016_08_045 crossref_primary_10_1016_j_virol_2017_05_016 crossref_primary_10_1038_emi_2015_44 crossref_primary_10_1128_jvi_00710_23 crossref_primary_10_1371_journal_ppat_1003738 crossref_primary_10_1186_s12977_016_0243_3 crossref_primary_10_1371_journal_pone_0179597 crossref_primary_10_1007_s10142_024_01425_9 crossref_primary_10_1371_journal_pone_0170530 crossref_primary_10_3389_fimmu_2023_1271686 crossref_primary_10_1016_j_virol_2014_05_034 crossref_primary_10_1586_14760584_2014_907528 crossref_primary_10_1038_s41541_017_0013_9 crossref_primary_10_1016_j_molimm_2015_04_011 crossref_primary_10_1097_COH_0000000000000821 crossref_primary_10_12688_gatesopenres_14743_1 crossref_primary_10_1097_QAD_0000000000001200 crossref_primary_10_1128_JVI_00540_14 crossref_primary_10_1128_CVI_00230_14 crossref_primary_10_1016_j_celrep_2022_110436 crossref_primary_10_12688_gatesopenres_14743_2 crossref_primary_10_1371_journal_ppat_1011359 crossref_primary_10_1128_JVI_02737_12 crossref_primary_10_1016_j_celrep_2018_11_058 crossref_primary_10_3389_fimmu_2024_1476924 crossref_primary_10_7554_eLife_92379_3 crossref_primary_10_1038_s41541_020_00277_1 crossref_primary_10_1038_s41541_022_00505_w crossref_primary_10_1074_jbc_M114_554089 crossref_primary_10_1016_j_celrep_2017_09_024 crossref_primary_10_1128_JVI_01846_18 crossref_primary_10_1172_jci_insight_88522 crossref_primary_10_2174_1570162X18666200129160723 crossref_primary_10_1016_j_bmcl_2021_128341 crossref_primary_10_1016_j_vaccine_2018_07_034 crossref_primary_10_1016_j_nano_2018_12_001 crossref_primary_10_1038_nsmb_3144 crossref_primary_10_2139_ssrn_3300039 crossref_primary_10_1128_JVI_03211_15 crossref_primary_10_3389_fimmu_2021_702705 crossref_primary_10_1093_infdis_jiy348 crossref_primary_10_3390_v11010069 crossref_primary_10_1128_mSphere_00880_20 crossref_primary_10_1016_j_immuni_2016_04_016 crossref_primary_10_1128_JVI_02868_14 crossref_primary_10_1074_jbc_RA117_000709 crossref_primary_10_1002_jia2_25793 crossref_primary_10_1016_j_chom_2014_08_006 crossref_primary_10_1016_j_vaccine_2019_12_058 crossref_primary_10_1097_COH_0000000000000362 crossref_primary_10_3389_fimmu_2021_734304 crossref_primary_10_1126_sciadv_abm3948 crossref_primary_10_1172_JCI163338 crossref_primary_10_1016_j_celrep_2021_109561 crossref_primary_10_1097_COH_0000000000000360 crossref_primary_10_1128_jvi_01864_22 crossref_primary_10_1128_JVI_02378_14 crossref_primary_10_1016_j_immuni_2022_09_003 crossref_primary_10_1016_j_ebiom_2016_06_037 crossref_primary_10_1016_j_vaccine_2023_07_046 crossref_primary_10_1080_21645515_2016_1276138 crossref_primary_10_1371_journal_pone_0152425 crossref_primary_10_1097_QAI_0000000000000530 crossref_primary_10_1128_JVI_02198_17 crossref_primary_10_1016_j_virol_2019_01_011 crossref_primary_10_1128_JVI_01560_15 crossref_primary_10_4049_jimmunol_1601484 crossref_primary_10_3389_fimmu_2020_00719 crossref_primary_10_3390_vaccines7030082 crossref_primary_10_1097_COH_0000000000000487 crossref_primary_10_1186_1742_4690_10_114 crossref_primary_10_1016_j_chom_2018_12_001 crossref_primary_10_1371_journal_pone_0111334 crossref_primary_10_1128_JVI_01164_14 crossref_primary_10_3390_vaccines13030231 crossref_primary_10_1172_jci_insight_137079 crossref_primary_10_3389_fimmu_2018_00117 crossref_primary_10_1128_JVI_02119_18 crossref_primary_10_1089_aid_2015_0034 crossref_primary_10_3389_fimmu_2019_00332 crossref_primary_10_1016_j_cell_2017_06_048 crossref_primary_10_3390_v12010024 crossref_primary_10_1371_journal_pone_0233577 crossref_primary_10_1093_infdis_jiu444 crossref_primary_10_1111_imr_12483 crossref_primary_10_1128_JVI_00411_17 crossref_primary_10_1038_ncomms15711 crossref_primary_10_1126_scitranslmed_3007730 crossref_primary_10_1371_journal_pone_0075665 crossref_primary_10_1089_aid_2014_0034 crossref_primary_10_1128_microbiolspec_AID_0025_2014 crossref_primary_10_2139_ssrn_3802020 crossref_primary_10_1016_j_vaccine_2016_09_053 crossref_primary_10_1097_COH_0b013e328361d178 crossref_primary_10_3389_fimmu_2019_02741 crossref_primary_10_3390_cells8040365 crossref_primary_10_1126_science_aab1253 crossref_primary_10_1016_j_vaccine_2015_03_059 crossref_primary_10_1128_JVI_03296_13 crossref_primary_10_4049_jimmunol_2001010 crossref_primary_10_1038_s41598_017_12883_6 crossref_primary_10_1016_j_ebiom_2019_08_072 crossref_primary_10_1016_j_vetmic_2017_05_013 crossref_primary_10_3390_vaccines8040681 crossref_primary_10_1128_JVI_01175_20 |
Cites_doi | 10.1016/B978-0-12-381270-4.00019-6 10.4049/jimmunol.0901068 10.1073/pnas.0802203105 10.1056/NEJMoa1113425 10.1038/nrmicro1819 10.1038/nprot.2008.91 10.1128/JVI.00927-07 10.1016/j.virol.2004.12.034 10.1016/j.jviromet.2009.02.014 10.1093/infdis/jis367 10.1038/nri2801 10.1107/S0907444902016657 10.1126/science.1178746 10.1038/nbt.2197 10.1128/JVI.02363-09 10.1128/JVI.05045-11 10.1128/JVI.02108-09 10.1128/JVI.05680-11 10.1093/cid/cis238 10.1128/jvi.68.12.8312-8320.1994 10.1016/j.virol.2012.02.003 10.1038/ni1566 10.1084/jem.20110363 10.1089/aid.2012.0103 10.1038/nature10696 10.1128/JVI.05601-11 10.1038/nm.2316 10.1128/JVI.01023-12 10.1371/journal.ppat.1001301 10.1128/JVI.00966-10 10.1128/JVI.00696-12 10.1016/j.virol.2006.04.043 10.1371/journal.ppat.1002200 10.1038/nature11519 10.1056/NEJMoa0908492 10.1016/S0076-6879(97)76066-X 10.1107/S0907444904019158 10.1128/JVI.00426-12 10.1128/JVI.00171-11 10.1016/S0264-410X(98)00182-0 10.4049/jimmunol.178.7.4424 10.1128/JVI.73.11.8966-8974.1999 10.1016/j.virol.2010.08.028 10.1002/cyto.a.21084 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 24, 2013 2013 Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 24, 2013 – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.immuni.2012.11.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 186 |
ExternalDocumentID | PMC3569735 3337133441 23313589 10_1016_j_immuni_2012_11_011 S1074761312005523 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI067854 – fundername: NIAID NIH HHS grantid: AI64518 – fundername: NIAID NIH HHS grantid: P30 AI064518 – fundername: NIAID NIH HHS grantid: AI100645 – fundername: NIAID NIH HHS grantid: UM1 AI100645 – fundername: NCRR NIH HHS grantid: S10RR019145 – fundername: NIAID NIH HHS grantid: U01 AI067854 – fundername: Intramural NIH HHS – fundername: NIAID NIH HHS grantid: UC6 AI058607 – fundername: NIAID NIH HHS grantid: AI067854 – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: UM1 AI100645 || AI |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAQFI AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-814d5badca615d07dad092c3ba91b4b86c9b559107f0abcecaa8b87933e6fa643 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 13:53:57 EDT 2025 Sun Sep 28 01:34:00 EDT 2025 Sun Sep 28 00:01:12 EDT 2025 Fri Jul 25 11:15:54 EDT 2025 Mon Jul 21 06:03:46 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Jul 04 04:46:10 EDT 2025 Fri Feb 23 02:28:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-814d5badca615d07dad092c3ba91b4b86c9b559107f0abcecaa8b87933e6fa643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Contributed Equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761312005523 |
PMID | 23313589 |
PQID | 1536930933 |
PQPubID | 2031079 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3569735 proquest_miscellaneous_1554955833 proquest_miscellaneous_1282517934 proquest_journals_1536930933 pubmed_primary_23313589 crossref_citationtrail_10_1016_j_immuni_2012_11_011 crossref_primary_10_1016_j_immuni_2012_11_011 elsevier_sciencedirect_doi_10_1016_j_immuni_2012_11_011 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-24 |
PublicationDateYYYYMMDD | 2013-01-24 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Bonsignori, Hwang, Chen, Tsao, Morris, Gray, Marshall, Crump, Kapiga, Sam (bib8) 2011; 85 Alam, Scearce, Parks, Plonk, Plonk, Sutherland, Gorny, Zolla-Pazner, Vanleeuwen, Moody (bib3) 2008; 82 Gorny, Moore, Conley, Karwowska, Sodroski, Williams, Burda, Boots, Zolla-Pazner (bib15) 1994; 68 Trkola, Matthews, Gordon, Ketas, Moore (bib44) 1999; 73 Liu, Overman, Yates, Alam, Vandergrift, Chen, Graw, Freel, Kappes, Ochsenbauer (bib28) 2011; 85 Rolland, Tovanabutra, deCamp, Frahm, Gilbert, Sanders-Buell, Heath, Magaret, Bose, Bradfield (bib41) 2011; 17 Montefiori (bib31) 2005; Chapter 12 Edmonds, Ding, Yuan, Wei, Smith, Conway, Wieczorek, Brown, Polonis, West (bib12) 2010; 408 Liao, Chen, Munshaw, Zhang, Marshall, Vandergrift, Whitesides, Lu, Yu, Hwang (bib27) 2011; 208 Emsley, Cowtan (bib13) 2004; 60 Karasavvas, Billings, Rao, Williams, Zolla-Pazner, Bailer, Koup, Madnote, Arworn, Shen (bib19) 2012; 28 Pollara, Hart, Brewer, Pickeral, Packard, Hoxie, Komoriya, Ochsenbauer, Kappes, Roederer (bib39) 2011; 79 McLellan, Pancera, Carrico, Gorman, Julien, Khayat, Louder, Pejchal, Sastry, Dai (bib30) 2011; 480 Haynes, Kelsoe, Harrison, Kepler (bib18) 2012; 30 Plotkin, Gilbert (bib38) 2012; 54 Liao, Levesque, Nagel, Dixon, Zhang, Walter, Parks, Whitesides, Marshall, Hwang (bib26) 2009; 158 Burrer, Haessig-Einius, Aubertin, Moog (bib10) 2005; 333 Alam, McAdams, Boren, Rak, Scearce, Gao, Camacho, Gewirth, Kelsoe, Chen, Haynes (bib2) 2007; 178 Doria-Rose, Georgiev, O’Dell, Chuang, Staupe, McLellan, Gorman, Pancera, Bonsignori, Haynes (bib11) 2012; 86 Langer, Cohen, Lamzin, Perrakis (bib22) 2008; 3 Bonsignori, Pollara, Moody, Alpert, Chen, Hwang, Gilbert, Huang, Gurley, Kozink (bib9) 2012; 86 Walker, Phogat, Chan-Hui, Wagner, Phung, Goss, Wrin, Simek, Fling, Mitcham (bib45) 2009; 326 Ma, Alam, Go, Lu, Desaire, Tomaras, Bowman, Sutherland, Scearce, Santra (bib29) 2011; 7 Liao, Sutherland, Xia, Brock, Scearce, Vanleeuwen, Alam, McAdams, Weaver, Camacho (bib25) 2006; 353 Pancera, McLellan, Wu, Zhu, Changela, Schmidt, Yang, Zhou, Phogat, Mascola, Kwong (bib36) 2010; 84 Alam, Liao, Tomaras, Bonsignori, Tsao, Hwang, Chen, Lloyd, Bowman, Sutherland (bib5) 2012 Zolla-Pazner, Cardozo (bib46) 2010; 10 Haynes, Gilbert, McElrath, Zolla-Pazner, Tomaras, Alam, Evans, Montefiori, Karnasuta, Sutthent (bib17) 2012; 366 Bonsignori, Moody, Parks, Holl, Kelsoe, Hicks, Vandergrift, Tomaras, Haynes (bib7) 2009; 183 Leaman, Kinkead, Zwick (bib23) 2010; 84 Arthos, Cicala, Martinelli, Macleod, Van Ryk, Wei, Xiao, Veenstra, Conrad, Lempicki (bib6) 2008; 9 Ferrari, Pollara, Kozink, Harms, Drinker, Freel, Moody, Alam, Tomaras, Ochsenbauer (bib14) 2011; 85 Gorny, Pan, Williams, Wang, Volsky, O’Neal, Spurrier, Sampson, Li, Seaman (bib16) 2012; 427 Karlsson Hedestam, Fouchier, Phogat, Burton, Sodroski, Wyatt (bib20) 2008; 6 Alam, Liao, Dennison, Jaeger, Parks, Anasti, Foulger, Donathan, Lucas, Verkoczy (bib4) 2011; 85 Montefiori, Karnasuta, Huang, Ahmed, Gilbert, de Souza, McLinden, Tovanabutra, Laurence-Chenine, Sanders-Buell (bib32) 2012; 206 Pinter, Honnen, Kayman, Trochev, Wu (bib37) 1998; 16 Rolland, Edlefsen, Larsen, Tovanabutra, Sanders-Buell, Hertz, deCamp, Carrico, Menis, Magaret (bib42) 2012; 490 Leaver-Fay, Tyka, Lewis, Lange, Thompson, Jacak, Kaufman, Renfrew, Smith, Sheffler (bib24) 2011; 487 Nawaz, Cicala, Van Ryk, Block, Jelicic, McNally, Ogundare, Pascuccio, Patel, Wei (bib34) 2011; 7 Otwinowski, Minor (bib35) 1997; 276 Moody, Yates, Amos, Drinker, Eudailey, Gurley, Marshall, Whitesides, Chen, Foulger (bib33) 2012; 86 Adams, Grosse-Kunstleve, Hung, Loerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib1) 2002; 58 Keele, Giorgi, Salazar-Gonzalez, Decker, Pham, Salazar, Sun, Grayson, Wang, Li (bib21) 2008; 105 Seaman, Janes, Hawkins, Grandpre, Devoy, Giri, Coffey, Harris, Wood, Daniels (bib43) 2010; 84 Rerks-Ngarm, Pitisuttithum, Nitayaphan, Kaewkungwal, Chiu, Paris, Premsri, Namwat, de Souza, Adams (bib40) 2009; 361 Trkola (10.1016/j.immuni.2012.11.011_bib44) 1999; 73 Haynes (10.1016/j.immuni.2012.11.011_bib18) 2012; 30 Alam (10.1016/j.immuni.2012.11.011_bib4) 2011; 85 Liao (10.1016/j.immuni.2012.11.011_bib27) 2011; 208 Nawaz (10.1016/j.immuni.2012.11.011_bib34) 2011; 7 Otwinowski (10.1016/j.immuni.2012.11.011_bib35) 1997; 276 Montefiori (10.1016/j.immuni.2012.11.011_bib32) 2012; 206 Pancera (10.1016/j.immuni.2012.11.011_bib36) 2010; 84 Zolla-Pazner (10.1016/j.immuni.2012.11.011_bib46) 2010; 10 Bonsignori (10.1016/j.immuni.2012.11.011_bib9) 2012; 86 Haynes (10.1016/j.immuni.2012.11.011_bib17) 2012; 366 Karlsson Hedestam (10.1016/j.immuni.2012.11.011_bib20) 2008; 6 Liu (10.1016/j.immuni.2012.11.011_bib28) 2011; 85 Doria-Rose (10.1016/j.immuni.2012.11.011_bib11) 2012; 86 Rolland (10.1016/j.immuni.2012.11.011_bib41) 2011; 17 Bonsignori (10.1016/j.immuni.2012.11.011_bib7) 2009; 183 Adams (10.1016/j.immuni.2012.11.011_bib1) 2002; 58 Burrer (10.1016/j.immuni.2012.11.011_bib10) 2005; 333 Langer (10.1016/j.immuni.2012.11.011_bib22) 2008; 3 Alam (10.1016/j.immuni.2012.11.011_bib3) 2008; 82 Leaman (10.1016/j.immuni.2012.11.011_bib23) 2010; 84 Rolland (10.1016/j.immuni.2012.11.011_bib42) 2012; 490 Gorny (10.1016/j.immuni.2012.11.011_bib15) 1994; 68 Liao (10.1016/j.immuni.2012.11.011_bib26) 2009; 158 Walker (10.1016/j.immuni.2012.11.011_bib45) 2009; 326 Alam (10.1016/j.immuni.2012.11.011_bib5) 2012 Alam (10.1016/j.immuni.2012.11.011_bib2) 2007; 178 Gorny (10.1016/j.immuni.2012.11.011_bib16) 2012; 427 Pinter (10.1016/j.immuni.2012.11.011_bib37) 1998; 16 Seaman (10.1016/j.immuni.2012.11.011_bib43) 2010; 84 Leaver-Fay (10.1016/j.immuni.2012.11.011_bib24) 2011; 487 Pollara (10.1016/j.immuni.2012.11.011_bib39) 2011; 79 McLellan (10.1016/j.immuni.2012.11.011_bib30) 2011; 480 Keele (10.1016/j.immuni.2012.11.011_bib21) 2008; 105 Moody (10.1016/j.immuni.2012.11.011_bib33) 2012; 86 Ma (10.1016/j.immuni.2012.11.011_bib29) 2011; 7 Arthos (10.1016/j.immuni.2012.11.011_bib6) 2008; 9 Karasavvas (10.1016/j.immuni.2012.11.011_bib19) 2012; 28 Liao (10.1016/j.immuni.2012.11.011_bib25) 2006; 353 Plotkin (10.1016/j.immuni.2012.11.011_bib38) 2012; 54 Rerks-Ngarm (10.1016/j.immuni.2012.11.011_bib40) 2009; 361 Emsley (10.1016/j.immuni.2012.11.011_bib13) 2004; 60 Edmonds (10.1016/j.immuni.2012.11.011_bib12) 2010; 408 Bonsignori (10.1016/j.immuni.2012.11.011_bib8) 2011; 85 Montefiori (10.1016/j.immuni.2012.11.011_bib31) 2005; Chapter 12 Ferrari (10.1016/j.immuni.2012.11.011_bib14) 2011; 85 23638741 - Immunotherapy. 2013 May;5(5):453-5 23352219 - Immunity. 2013 Jan 24;38(1):8-9 |
References_xml | – volume: 487 start-page: 545 year: 2011 end-page: 574 ident: bib24 article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Methods Enzymol. – volume: 84 start-page: 1439 year: 2010 end-page: 1452 ident: bib43 article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies publication-title: J. Virol. – volume: 178 start-page: 4424 year: 2007 end-page: 4435 ident: bib2 article-title: The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes publication-title: J. Immunol. – volume: 85 start-page: 11725 year: 2011 end-page: 11731 ident: bib4 article-title: Differential reactivity of germ line allelic variants of a broadly neutralizing HIV-1 antibody to a gp41 fusion intermediate conformation publication-title: J. Virol. – volume: 408 start-page: 1 year: 2010 end-page: 13 ident: bib12 article-title: Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC publication-title: Virology – volume: 333 start-page: 102 year: 2005 end-page: 113 ident: bib10 article-title: Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41 publication-title: Virology – volume: Chapter 12 year: 2005 ident: bib31 article-title: Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays publication-title: Curr. Protoc. Immunol. – volume: 16 start-page: 1803 year: 1998 end-page: 1811 ident: bib37 article-title: Potent neutralization of primary HIV-1 isolates by antibodies directed against epitopes present in the V1/V2 domain of HIV-1 gp120 publication-title: Vaccine – volume: 85 start-page: 9998 year: 2011 end-page: 10009 ident: bib8 article-title: Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors publication-title: J. Virol. – volume: 30 start-page: 423 year: 2012 end-page: 433 ident: bib18 article-title: B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study publication-title: Nat. Biotechnol. – volume: 86 start-page: 8319 year: 2012 end-page: 8323 ident: bib11 article-title: A short segment of the HIV-1 gp120 V1/V2 region is a major determinant of resistance to V1/V2 neutralizing antibodies publication-title: J. Virol. – volume: 7 start-page: e1001301 year: 2011 ident: bib34 article-title: The genotype of early-transmitting HIV gp120s promotes α (4) β(7)-reactivity, revealing α (4) β(7) +/CD4+ T cells as key targets in mucosal transmission publication-title: PLoS Pathog. – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 84 start-page: 3382 year: 2010 end-page: 3395 ident: bib23 article-title: In-solution virus capture assay helps deconstruct heterogeneous antibody recognition of human immunodeficiency virus type 1 publication-title: J. Virol. – volume: 79 start-page: 603 year: 2011 end-page: 612 ident: bib39 article-title: High-throughput quantitative analysis of HIV-1 and SIV-specific ADCC-mediating antibody responses publication-title: Cytometry A – volume: 9 start-page: 301 year: 2008 end-page: 309 ident: bib6 article-title: HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells publication-title: Nat. Immunol. – volume: 480 start-page: 336 year: 2011 end-page: 343 ident: bib30 article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 publication-title: Nature – volume: 326 start-page: 285 year: 2009 end-page: 289 ident: bib45 article-title: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target publication-title: Science – volume: 366 start-page: 1275 year: 2012 end-page: 1286 ident: bib17 article-title: Immune-correlates analysis of an HIV-1 vaccine efficacy trial publication-title: N. Engl. J. Med. – volume: 6 start-page: 143 year: 2008 end-page: 155 ident: bib20 article-title: The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus publication-title: Nat. Rev. Microbiol. – volume: 158 start-page: 171 year: 2009 end-page: 179 ident: bib26 article-title: High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies publication-title: J. Virol. Methods – volume: 183 start-page: 2708 year: 2009 end-page: 2717 ident: bib7 article-title: HIV-1 envelope induces memory B cell responses that correlate with plasma antibody levels after envelope gp120 protein vaccination or HIV-1 infection publication-title: J. Immunol. – volume: 353 start-page: 268 year: 2006 end-page: 282 ident: bib25 article-title: A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses publication-title: Virology – volume: 73 start-page: 8966 year: 1999 end-page: 8974 ident: bib44 article-title: A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor publication-title: J. Virol. – volume: 82 start-page: 115 year: 2008 end-page: 125 ident: bib3 article-title: Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection publication-title: J. Virol. – volume: 86 start-page: 7496 year: 2012 end-page: 7507 ident: bib33 article-title: HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages publication-title: J. Virol. – volume: 85 start-page: 11196 year: 2011 end-page: 11207 ident: bib28 article-title: Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection publication-title: J. Virol. – year: 2012 ident: bib5 article-title: Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion publication-title: J. Virol. – volume: 54 start-page: 1615 year: 2012 end-page: 1617 ident: bib38 article-title: Nomenclature for immune correlates of protection after vaccination publication-title: Clin. Infect. Dis. – volume: 28 start-page: 1444 year: 2012 end-page: 1457 ident: bib19 article-title: The Thai phase III HIV type 1 vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120 publication-title: AIDS Res. Hum. Retroviruses – volume: 105 start-page: 7552 year: 2008 end-page: 7557 ident: bib21 article-title: Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 366 year: 2011 end-page: 371 ident: bib41 article-title: Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial publication-title: Nat. Med. – volume: 3 start-page: 1171 year: 2008 end-page: 1179 ident: bib22 article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 publication-title: Nat. Protoc. – volume: 10 start-page: 527 year: 2010 end-page: 535 ident: bib46 article-title: Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design publication-title: Nat. Rev. Immunol. – volume: 361 start-page: 2209 year: 2009 end-page: 2220 ident: bib40 article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand publication-title: N. Engl. J. Med. – volume: 86 start-page: 11521 year: 2012 end-page: 11532 ident: bib9 article-title: Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family publication-title: J. Virol. – volume: 7 start-page: e1002200 year: 2011 ident: bib29 article-title: Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies publication-title: PLoS Pathog. – volume: 206 start-page: 431 year: 2012 end-page: 441 ident: bib32 article-title: Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials publication-title: J. Infect. Dis. – volume: 68 start-page: 8312 year: 1994 end-page: 8320 ident: bib15 article-title: Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1 publication-title: J. Virol. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib35 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 208 start-page: 2237 year: 2011 end-page: 2249 ident: bib27 article-title: Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated publication-title: J. Exp. Med. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib13 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 427 start-page: 198 year: 2012 end-page: 207 ident: bib16 article-title: Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals publication-title: Virology – volume: 490 start-page: 417 year: 2012 end-page: 420 ident: bib42 article-title: Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2 publication-title: Nature – volume: 85 start-page: 7029 year: 2011 end-page: 7036 ident: bib14 article-title: An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum publication-title: J. Virol. – volume: 84 start-page: 8098 year: 2010 end-page: 8110 ident: bib36 article-title: Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1 publication-title: J. Virol. – volume: 487 start-page: 545 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib24 article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-381270-4.00019-6 – volume: 183 start-page: 2708 year: 2009 ident: 10.1016/j.immuni.2012.11.011_bib7 article-title: HIV-1 envelope induces memory B cell responses that correlate with plasma antibody levels after envelope gp120 protein vaccination or HIV-1 infection publication-title: J. Immunol. doi: 10.4049/jimmunol.0901068 – volume: 105 start-page: 7552 year: 2008 ident: 10.1016/j.immuni.2012.11.011_bib21 article-title: Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802203105 – volume: 366 start-page: 1275 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib17 article-title: Immune-correlates analysis of an HIV-1 vaccine efficacy trial publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1113425 – volume: 6 start-page: 143 year: 2008 ident: 10.1016/j.immuni.2012.11.011_bib20 article-title: The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1819 – volume: 3 start-page: 1171 year: 2008 ident: 10.1016/j.immuni.2012.11.011_bib22 article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.91 – volume: 82 start-page: 115 year: 2008 ident: 10.1016/j.immuni.2012.11.011_bib3 article-title: Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection publication-title: J. Virol. doi: 10.1128/JVI.00927-07 – volume: 333 start-page: 102 year: 2005 ident: 10.1016/j.immuni.2012.11.011_bib10 article-title: Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41 publication-title: Virology doi: 10.1016/j.virol.2004.12.034 – volume: 158 start-page: 171 year: 2009 ident: 10.1016/j.immuni.2012.11.011_bib26 article-title: High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2009.02.014 – volume: 206 start-page: 431 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib32 article-title: Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis367 – volume: Chapter 12 year: 2005 ident: 10.1016/j.immuni.2012.11.011_bib31 article-title: Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays publication-title: Curr. Protoc. Immunol. – volume: 10 start-page: 527 year: 2010 ident: 10.1016/j.immuni.2012.11.011_bib46 article-title: Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2801 – volume: 58 start-page: 1948 year: 2002 ident: 10.1016/j.immuni.2012.11.011_bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902016657 – volume: 326 start-page: 285 year: 2009 ident: 10.1016/j.immuni.2012.11.011_bib45 article-title: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target publication-title: Science doi: 10.1126/science.1178746 – volume: 30 start-page: 423 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib18 article-title: B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2197 – volume: 84 start-page: 3382 year: 2010 ident: 10.1016/j.immuni.2012.11.011_bib23 article-title: In-solution virus capture assay helps deconstruct heterogeneous antibody recognition of human immunodeficiency virus type 1 publication-title: J. Virol. doi: 10.1128/JVI.02363-09 – volume: 85 start-page: 9998 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib8 article-title: Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors publication-title: J. Virol. doi: 10.1128/JVI.05045-11 – volume: 84 start-page: 1439 year: 2010 ident: 10.1016/j.immuni.2012.11.011_bib43 article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.02108-09 – volume: 85 start-page: 11725 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib4 article-title: Differential reactivity of germ line allelic variants of a broadly neutralizing HIV-1 antibody to a gp41 fusion intermediate conformation publication-title: J. Virol. doi: 10.1128/JVI.05680-11 – year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib5 article-title: Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion publication-title: J. Virol. – volume: 54 start-page: 1615 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib38 article-title: Nomenclature for immune correlates of protection after vaccination publication-title: Clin. Infect. Dis. doi: 10.1093/cid/cis238 – volume: 68 start-page: 8312 year: 1994 ident: 10.1016/j.immuni.2012.11.011_bib15 article-title: Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1 publication-title: J. Virol. doi: 10.1128/jvi.68.12.8312-8320.1994 – volume: 427 start-page: 198 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib16 article-title: Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals publication-title: Virology doi: 10.1016/j.virol.2012.02.003 – volume: 9 start-page: 301 year: 2008 ident: 10.1016/j.immuni.2012.11.011_bib6 article-title: HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells publication-title: Nat. Immunol. doi: 10.1038/ni1566 – volume: 208 start-page: 2237 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib27 article-title: Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated publication-title: J. Exp. Med. doi: 10.1084/jem.20110363 – volume: 28 start-page: 1444 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib19 article-title: The Thai phase III HIV type 1 vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120 publication-title: AIDS Res. Hum. Retroviruses doi: 10.1089/aid.2012.0103 – volume: 480 start-page: 336 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib30 article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 publication-title: Nature doi: 10.1038/nature10696 – volume: 85 start-page: 11196 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib28 article-title: Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection publication-title: J. Virol. doi: 10.1128/JVI.05601-11 – volume: 17 start-page: 366 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib41 article-title: Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial publication-title: Nat. Med. doi: 10.1038/nm.2316 – volume: 86 start-page: 11521 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib9 article-title: Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family publication-title: J. Virol. doi: 10.1128/JVI.01023-12 – volume: 7 start-page: e1001301 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib34 article-title: The genotype of early-transmitting HIV gp120s promotes α (4) β(7)-reactivity, revealing α (4) β(7) +/CD4+ T cells as key targets in mucosal transmission publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001301 – volume: 84 start-page: 8098 year: 2010 ident: 10.1016/j.immuni.2012.11.011_bib36 article-title: Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1 publication-title: J. Virol. doi: 10.1128/JVI.00966-10 – volume: 86 start-page: 8319 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib11 article-title: A short segment of the HIV-1 gp120 V1/V2 region is a major determinant of resistance to V1/V2 neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.00696-12 – volume: 353 start-page: 268 year: 2006 ident: 10.1016/j.immuni.2012.11.011_bib25 article-title: A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses publication-title: Virology doi: 10.1016/j.virol.2006.04.043 – volume: 7 start-page: e1002200 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib29 article-title: Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002200 – volume: 490 start-page: 417 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib42 article-title: Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2 publication-title: Nature doi: 10.1038/nature11519 – volume: 361 start-page: 2209 year: 2009 ident: 10.1016/j.immuni.2012.11.011_bib40 article-title: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0908492 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.immuni.2012.11.011_bib35 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.immuni.2012.11.011_bib13 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 86 start-page: 7496 year: 2012 ident: 10.1016/j.immuni.2012.11.011_bib33 article-title: HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages publication-title: J. Virol. doi: 10.1128/JVI.00426-12 – volume: 85 start-page: 7029 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib14 article-title: An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum publication-title: J. Virol. doi: 10.1128/JVI.00171-11 – volume: 16 start-page: 1803 year: 1998 ident: 10.1016/j.immuni.2012.11.011_bib37 article-title: Potent neutralization of primary HIV-1 isolates by antibodies directed against epitopes present in the V1/V2 domain of HIV-1 gp120 publication-title: Vaccine doi: 10.1016/S0264-410X(98)00182-0 – volume: 178 start-page: 4424 year: 2007 ident: 10.1016/j.immuni.2012.11.011_bib2 article-title: The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes publication-title: J. Immunol. doi: 10.4049/jimmunol.178.7.4424 – volume: 73 start-page: 8966 year: 1999 ident: 10.1016/j.immuni.2012.11.011_bib44 article-title: A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor publication-title: J. Virol. doi: 10.1128/JVI.73.11.8966-8974.1999 – volume: 408 start-page: 1 year: 2010 ident: 10.1016/j.immuni.2012.11.011_bib12 article-title: Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC publication-title: Virology doi: 10.1016/j.virol.2010.08.028 – volume: 79 start-page: 603 year: 2011 ident: 10.1016/j.immuni.2012.11.011_bib39 article-title: High-throughput quantitative analysis of HIV-1 and SIV-specific ADCC-mediating antibody responses publication-title: Cytometry A doi: 10.1002/cyto.a.21084 – reference: 23352219 - Immunity. 2013 Jan 24;38(1):8-9 – reference: 23638741 - Immunotherapy. 2013 May;5(5):453-5 |
SSID | ssj0014590 |
Score | 2.5641265 |
Snippet | The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated... The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, that correlated... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 176 |
SubjectTerms | Acquired immune deficiency syndrome AIDS AIDS Vaccines - immunology Amino Acid Sequence Amino Acid Substitution - immunology Antibodies, Monoclonal - immunology Antibodies, Monoclonal - metabolism Binding sites HIV Antibodies - chemistry HIV Antibodies - immunology HIV Antibodies - metabolism HIV Envelope Protein gp120 - chemistry HIV Envelope Protein gp120 - immunology HIV Envelope Protein gp120 - metabolism Human immunodeficiency virus 1 Humans Infections Ligands Lymphocytes Molecular Docking Simulation Molecular Sequence Data Peptides - chemistry Peptides - immunology Peptides - metabolism Protein Binding - immunology Protein Conformation Proteins Vaccines Viruses |
Title | Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2 |
URI | https://dx.doi.org/10.1016/j.immuni.2012.11.011 https://www.ncbi.nlm.nih.gov/pubmed/23313589 https://www.proquest.com/docview/1536930933 https://www.proquest.com/docview/1282517934 https://www.proquest.com/docview/1554955833 https://pubmed.ncbi.nlm.nih.gov/PMC3569735 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuCMproSAjcQ0bx4_Yx1K12iKVA0tXe7Nsx4GgKqnY7aG_o3-YGechFgSVuK3WthR7xjNj-_tmCHlXxsIIz6pMRZlnIiidaSVZxrXX2mnpWMrOf_5JLS7Ex7Vc75HjkQuDsMrB9vc2PVnr4Z_5sJrzq6aZLxFKCIdwzvBiBM5TYIeRVYokvvWH6SVBSJNPuEPoPdLnEsarSRwMBHgV7zGXJ2N_c09_hp-_oyh_cUunj8jDIZ6kR_0nPyZ7sT0g9_oKkzcH5P758Hb-hNyuXMBfFKt1JDYD7Wp61G4b3yGUkLqvroFgkTq6TEllMSHH5Q1dIGCmAz2L3fWGLiFExXFnOKdIe3bhj0jxPrdp6eJslTF60iYkEjZ3WE2TruBEjhwt-jki_nlDGXVtRYun5OL05MvxIhtKMmQB1nGLF4aV9K4KDiKhKi8rV-WmCNw7w7zwWgXj4YwCq13nzocYnAOhgw3gUdUOop9nZL_t2viC0FrpaJzXQahC-KC8L30oJThPI32o3YzwURI2DPnKsWzGpR2Bad9tLz-L8oOjjAX5zUg2jbrq83Xc0b8chWx39M6CS7lj5OGoE3bY9xsL_gNrS8J8Z-Tt1Aw7Fp9hXBKUZYkuDGsi_tEHojwjkRE3I897NZumU3DOuNQGPn1HAacOmDF8t6VtvqXM4VwqU3L58r8n_Yo8KFI9EJYV4pDsgzrG1xCVbf2btO1-AgqxOC4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEY8LgvJaKGAkrmHjOHacY6laZaHbA9uu9mbZjlOCqqRil0N_B3-YGechFgSVuK3WthR7xp5v7G9mCHmX-SRPLSsj6UUcpU6qSEnBIq6sUkYJw0J2_vmpLM7Tjyux2iGHQywM0ir7s78708Np3f8z7VdzelXX0wVSCcEJ5wwvRsCfukVuAxqIUbVnqw_jU0Iq8ngkHkL3IX4ukLzqEISBDK_kPSbzZOxv9ulP_Pk7jfIXu3T8kDzoASU96L75EdnxzR6505WYvN4jd-f94_lj8mNpHP6iWK4jhDPQtqIHzaa2LXIJqbkwNaBFaugiZJXFjByX17RAxkwLiubb72u6AIyK42Y4J0-78MJvnuKFbt3QYraMGD1qAhUJm1ssp0mX4JJjkBb97JEAvaaMmqakyRNyfnx0dlhEfU2GyME6bvDGsBTWlM4AFCrjrDRlnCeOW5Mzm1olXW7BSYHVrmJjnXfGgNThEOBeVgbgz1Oy27SNf05oJZXPjVUulUlqnbQ2sy4TYD1zYV1lJoQPktCuT1iOdTMu9cBM-6o7-WmUH_gyGuQ3IdE46qpL2HFD_2wQst5SPA025YaR-4NO6H7jrzUYECwuCfOdkLdjM2xZfIcxQVCahXhhWJP0H30A5uUCQ-Im5FmnZuN0Es4ZFyqHT99SwLEDpgzfbmnqLyF1OBcyz7h48d-TfkPuFWfzE30yO_30ktxPQnEQFiXpPtkF1fSvAKJt7OuwBX8Cuqc7UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vaccine+induction+of+antibodies+against+a+structurally+heterogeneous+site+of+immune+pressure+within+HIV-1+envelope+protein+variable+regions+1+and+2&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Liao%2C+Hua-Xin&rft.au=Bonsignori%2C+Mattia&rft.au=Alam%2C+S+Munir&rft.au=McLellan%2C+Jason+S&rft.date=2013-01-24&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=38&rft.issue=1&rft.spage=176&rft_id=info:doi/10.1016%2Fj.immuni.2012.11.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |