Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons

Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is po...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 90; no. 2; pp. 292 - 307
Main Authors Cohen, Samuel M., Ma, Huan, Kuchibhotla, Kishore V., Watson, Brendon O., Buzsáki, György, Froemke, Robert C., Tsien, Richard W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.04.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2016.03.001

Cover

Abstract Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. •Voltage-gated Ca2+ influx triggers nuclear translocation of CaM in PV+ interneurons•CaMK signaling promotes CREB phosphorylation and activates key genes in PV+ cells•γCaMKI, not γCaMKII, operates to shuttle CaM to the nucleus in PV+ cells•Low CaMKIV levels rate-limit CREB phosphorylation in PV+ cells Activity-dependent gene regulation is critical for long-term plasticity. Cohen et al. demonstrate that PV+ cortical interneurons rely on a CaM kinase-dependent signaling pathway, hinging on γCaMKI and rate-limited by CaMKIV, to trigger CREB phosphorylation and gene expression.
AbstractList Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by gamma CaMKI, not gamma CaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. •Voltage-gated Ca2+ influx triggers nuclear translocation of CaM in PV+ interneurons•CaMK signaling promotes CREB phosphorylation and activates key genes in PV+ cells•γCaMKI, not γCaMKII, operates to shuttle CaM to the nucleus in PV+ cells•Low CaMKIV levels rate-limit CREB phosphorylation in PV+ cells Activity-dependent gene regulation is critical for long-term plasticity. Cohen et al. demonstrate that PV+ cortical interneurons rely on a CaM kinase-dependent signaling pathway, hinging on γCaMKI and rate-limited by CaMKIV, to trigger CREB phosphorylation and gene expression.
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. Here, we report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca 2+ influx through Ca V 1 channels triggers CaM nuclear translocation via local Ca 2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca 2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Author Ma, Huan
Watson, Brendon O.
Froemke, Robert C.
Kuchibhotla, Kishore V.
Buzsáki, György
Tsien, Richard W.
Cohen, Samuel M.
AuthorAffiliation 3 The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Molecular Neurobiology Program, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
4 Department of Psychiatry and Mind Brain Research Institute, Weill-Cornell Medical College, New York, NY, 10021, USA
2 Department of Physiology, Institute of Neuroscience, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
1 NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
AuthorAffiliation_xml – name: 3 The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Molecular Neurobiology Program, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
– name: 4 Department of Psychiatry and Mind Brain Research Institute, Weill-Cornell Medical College, New York, NY, 10021, USA
– name: 1 NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
– name: 2 Department of Physiology, Institute of Neuroscience, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
Author_xml – sequence: 1
  givenname: Samuel M.
  surname: Cohen
  fullname: Cohen, Samuel M.
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 2
  givenname: Huan
  surname: Ma
  fullname: Ma, Huan
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 3
  givenname: Kishore V.
  surname: Kuchibhotla
  fullname: Kuchibhotla, Kishore V.
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 4
  givenname: Brendon O.
  surname: Watson
  fullname: Watson, Brendon O.
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 5
  givenname: György
  surname: Buzsáki
  fullname: Buzsáki, György
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 6
  givenname: Robert C.
  surname: Froemke
  fullname: Froemke, Robert C.
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
– sequence: 7
  givenname: Richard W.
  surname: Tsien
  fullname: Tsien, Richard W.
  email: richard.tsien@nyumc.org
  organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27041500$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URH_gDRCyxIZNBtuJ44QFEpoOUFFKF2Vteeyb1qPETm1nYN6DB8ajmUHQBeCNdeXvHh3fc0_RkfMOEHpOyYwSWr9ezRxMwbsZy9WMlDNC6CN0Qkkrioq27RE6IU1bFzUT5TE6jXGVgYq39Ak6ZoJUlBNygn4svmubVLLeFTdBuaiDHbcVnvtp7K27xdbhaxXWql9Og3XFtY822TXgC5cg7DxEvBjG3m8iVvjKr6HHc_UZf7JORSjOYQRnwKUsk-6-qQ0-tzFZpxPugh_w3oEPG3y1U3uKHneqj_Bsf5-hr-8XN_OPxeWXDxfzd5eF5i1JBS1JVwFTwGqouOAd64wpecONIR2hpiO8pDXjOs9LmCVtOtVUzGjeECVMXZZn6O1Od5yWAxidPQbVyzHYQYWN9MrKP1-cvZO3fi2rpq4bQbPAq71A8PcTxCQHGzX0vXLgpyipaEQr8mH_g5YtI23LM_ryAbryU3B5EluKcyaapsrUi9_N_3J9yDYDb3aADj7GAJ08JJ3_YntJidwuklzJXYhyu0iSlDLvSW6uHjQf9P_Rtp8o5NjWFoKM2oLTYGwAnaTx9u8CPwH7jOfB
CitedBy_id crossref_primary_10_1016_j_brainres_2016_11_006
crossref_primary_10_1152_jn_00287_2018
crossref_primary_10_1016_j_nlm_2019_107042
crossref_primary_10_1016_j_biopsych_2021_02_009
crossref_primary_10_1093_cercor_bhy227
crossref_primary_10_1038_s41467_018_04705_8
crossref_primary_10_3389_fnmol_2021_782206
crossref_primary_10_1016_j_tcb_2018_01_002
crossref_primary_10_1016_j_neubiorev_2021_11_021
crossref_primary_10_3389_fncel_2020_571216
crossref_primary_10_3389_fphar_2022_980449
crossref_primary_10_1038_s41598_019_47112_9
crossref_primary_10_1371_journal_pbio_2006387
crossref_primary_10_3389_fnsyn_2021_812905
crossref_primary_10_1016_j_biopsych_2024_02_003
crossref_primary_10_1016_j_neuron_2021_01_014
crossref_primary_10_18632_oncotarget_15405
crossref_primary_10_1016_j_neuron_2018_10_013
crossref_primary_10_7554_eLife_71443
crossref_primary_10_1016_j_conb_2018_11_001
crossref_primary_10_1038_s41467_018_05125_4
crossref_primary_10_3389_fnins_2022_1086994
crossref_primary_10_1038_nrn_2017_30
crossref_primary_10_1016_j_conb_2017_04_006
crossref_primary_10_3389_fnmol_2023_1298238
crossref_primary_10_1002_advs_202408618
crossref_primary_10_1523_JNEUROSCI_2599_17_2017
crossref_primary_10_1038_s41583_023_00742_5
crossref_primary_10_1152_physrev_00007_2017
crossref_primary_10_1523_ENEURO_0217_21_2021
crossref_primary_10_3390_ijms21041538
crossref_primary_10_3390_ijms232012328
crossref_primary_10_1016_j_nbd_2021_105382
crossref_primary_10_1111_apha_13282
crossref_primary_10_1016_j_neuron_2019_11_028
crossref_primary_10_1016_j_brainresbull_2017_11_016
crossref_primary_10_1111_jnc_14210
crossref_primary_10_3390_ijms26051831
crossref_primary_10_1016_j_conb_2016_12_009
crossref_primary_10_1038_s41419_024_07050_5
crossref_primary_10_1111_dgd_12571
crossref_primary_10_1016_j_celrep_2024_114701
crossref_primary_10_1101_cshperspect_a035287
crossref_primary_10_1073_pnas_2206217120
crossref_primary_10_1073_pnas_2022133118
crossref_primary_10_1073_pnas_2117435119
crossref_primary_10_1523_ENEURO_0135_21_2021
crossref_primary_10_1038_s41583_021_00467_3
crossref_primary_10_1007_s00429_021_02229_4
crossref_primary_10_1016_j_bbamcr_2016_12_004
crossref_primary_10_1523_JNEUROSCI_0572_22_2022
crossref_primary_10_1038_s41386_022_01274_9
crossref_primary_10_1523_JNEUROSCI_1883_20_2021
crossref_primary_10_1074_jbc_M117_788331
crossref_primary_10_3390_cells10082004
crossref_primary_10_1016_j_nlm_2021_107504
crossref_primary_10_1016_j_psychres_2024_116084
crossref_primary_10_1016_j_conb_2020_11_013
crossref_primary_10_1248_bpb_b22_00319
crossref_primary_10_3390_brainsci12081015
crossref_primary_10_1042_BST20231385
crossref_primary_10_1007_s12264_022_00840_x
crossref_primary_10_1016_j_neuron_2016_03_036
crossref_primary_10_3389_fncir_2022_911023
crossref_primary_10_1016_j_celrep_2024_114151
crossref_primary_10_1016_j_nbd_2023_106170
crossref_primary_10_1038_s41467_019_12962_4
crossref_primary_10_1186_s13229_020_00323_8
crossref_primary_10_3389_fncel_2020_577525
crossref_primary_10_1016_j_biopsych_2019_01_006
crossref_primary_10_1016_j_celrep_2022_110678
crossref_primary_10_1016_j_cell_2020_05_013
crossref_primary_10_1016_j_celrep_2022_111643
Cites_doi 10.1016/j.tins.2011.10.004
10.1016/j.neuron.2016.02.017
10.1016/j.neuron.2006.05.008
10.1038/nature09865
10.1113/jphysiol.2007.147298
10.1093/cercor/bhg132
10.1016/j.cell.2014.03.058
10.1016/j.neures.2006.09.013
10.1016/j.febslet.2004.04.042
10.1016/j.neuroscience.2005.06.073
10.1016/0006-8993(87)90921-8
10.1016/j.neuron.2014.10.039
10.1093/cercor/bht417
10.1091/mbc.E11-10-0863
10.1038/nprot.2006.86
10.1126/science.1149381
10.1074/jbc.270.51.30245
10.1038/375784a0
10.1016/j.neuron.2014.10.046
10.1016/S0893-133X(01)00225-1
10.1523/JNEUROSCI.4722-05.2006
10.1016/j.neuron.2007.05.021
10.1016/S0092-8674(00)81816-4
10.1016/j.cell.2014.09.019
10.1016/S0006-3223(02)01360-4
10.1016/j.pneurobio.2012.06.001
10.1074/jbc.M300578200
10.1523/JNEUROSCI.23-15-06315.2003
10.1016/j.cell.2012.05.027
10.1016/j.it.2008.08.005
10.1523/JNEUROSCI.1245-12.2012
10.1016/0959-4388(95)80012-3
10.1146/annurev.cellbio.24.110707.175235
10.1073/pnas.1105296108
10.1038/mp.2011.31
10.1016/j.jpsychires.2007.07.006
10.1016/j.bbrc.2006.05.066
10.1016/j.neuron.2015.03.014
10.1016/j.neuron.2006.08.024
10.1016/j.neuron.2008.08.021
10.1083/jcb.200805048
10.1016/j.cell.2012.03.041
10.1016/j.neuron.2008.09.024
10.1523/JNEUROSCI.14-02-00611.1994
10.1016/j.neuron.2013.09.033
10.1038/nature12866
10.1007/s00439-013-1416-y
10.1126/science.aad3647
10.1038/mp.2013.103
10.1016/j.cellsig.2004.05.001
10.1007/s100380050196
10.1016/j.schres.2014.12.026
10.1007/s00429-013-0539-1
10.1016/j.bbrc.2015.02.146
10.1038/32448
10.1038/nn.3077
10.1038/ng859
10.1523/JNEUROSCI.11-06-01496.1991
10.1016/S0896-6273(00)80026-4
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 20, 2016
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 20, 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2016.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 307
ExternalDocumentID PMC4866871
4040349291
27041500
10_1016_j_neuron_2016_03_001
S089662731600180X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R37 MH071739
– fundername: NIGMS NIH HHS
  grantid: R01 GM058234
– fundername: NIGMS NIH HHS
  grantid: T32 GM007308
– fundername: NIDCD NIH HHS
  grantid: R01 DC012557
– fundername: NIDCD NIH HHS
  grantid: K99 DC015014
– fundername: NIMH NIH HHS
  grantid: R01 MH054671
– fundername: NIMH NIH HHS
  grantid: R01 MH071739
– fundername: NINDS NIH HHS
  grantid: R01 NS024067
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-130f4e2ae26e4575f2fdd3585dd0f01df0531625c1017db18fa842dc580a7d633
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:06:44 EDT 2025
Thu Sep 04 21:00:02 EDT 2025
Thu Sep 04 19:53:17 EDT 2025
Sun Jul 13 05:08:14 EDT 2025
Thu Jan 02 23:11:27 EST 2025
Thu Apr 24 22:53:10 EDT 2025
Tue Jul 01 01:16:13 EDT 2025
Fri Feb 23 02:11:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-130f4e2ae26e4575f2fdd3585dd0f01df0531625c1017db18fa842dc580a7d633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S089662731600180X
PMID 27041500
PQID 1785527884
PQPubID 2031076
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4866871
proquest_miscellaneous_1787977772
proquest_miscellaneous_1783920995
proquest_journals_1785527884
pubmed_primary_27041500
crossref_citationtrail_10_1016_j_neuron_2016_03_001
crossref_primary_10_1016_j_neuron_2016_03_001
elsevier_sciencedirect_doi_10_1016_j_neuron_2016_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-20
PublicationDateYYYYMMDD 2016-04-20
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Agassandian, Chen, Pulijala, Kaercher, Glasser, Mallampalli (bib2) 2012; 23
Klausberger, Somogyi (bib34) 2008; 321
Schild, Zbinden, Bell, Yu, Sengupta, Goodman, Glauser (bib46) 2014; 84
Kawaguchi, Katsumaru, Kosaka, Heizmann, Hama (bib31) 1987; 416
Waltes, Duketis, Knapp, Anney, Huguet, Schlitt, Jarczok, Sachse, Kämpfer, Kleinböck (bib52) 2014; 133
Kinney, Davis, Tabarean, Conti, Bartfai, Behrens (bib33) 2006; 26
Lewis, Curley, Glausier, Volk (bib36) 2012; 35
Cohen, Greenberg (bib12) 2008; 24
Cohen, Li, Tsien, Ma (bib13) 2015; 460
Lau, Murthy (bib35) 2012; 32
Jiang, Swann (bib26) 2005; 135
Yu, Bell, Glauser, Van Hooser, Goodman, Sengupta (bib58) 2014; 84
Benes, Berretta (bib5) 2001; 25
Jones, Huntley, Benson (bib29) 1994; 14
Donato, Rompani, Caroni (bib19) 2013; 504
Hashimoto, Volk, Eggan, Mirnics, Pierri, Sun, Sampson, Lewis (bib22) 2003; 23
Jiang, Chen (bib25) 2006; 1
Gu, Spitzer (bib21) 1995; 375
Ch’ng, Uzgil, Lin, Avliyakulov, O’Dell, Martin (bib11) 2012; 150
Takemoto-Kimura, Terai, Takamoto, Ohmae, Kikumura, Segi, Arakawa, Furuyashiki, Narumiya, Bito (bib50) 2003; 278
Ma, Groth, Cohen, Emery, Li, Hoedt, Zhang, Neubert, Tsien (bib40) 2014; 159
Patz, Grabert, Gorba, Wirth, Wahle (bib42) 2004; 14
Takemoto-Kimura, Ageta-Ishihara, Nonaka, Adachi-Morishima, Mano, Okamura, Fujii, Fuse, Hoshino, Suzuki (bib51) 2007; 54
Hong, McCord, Greenberg (bib23) 2008; 60
Spiegel, Mardinly, Gabel, Bazinet, Couch, Tzeng, Harmin, Greenberg (bib47) 2014; 157
Jiao, Zhang, Zhang, Wang, Sakata, Lu, Sun (bib27) 2011; 108
Gao, Blair, Marshall (bib20) 2006; 345
Royer, Zemelman, Losonczy, Kim, Chance, Magee, Buzsáki (bib45) 2012; 15
Wheeler, Groth, Ma, Barrett, Owen, Safa, Tsien (bib57) 2012; 149
Li, Tadross, Tsien (bib37) 2016; 351
Kamata, Sakagami, Tokumitsu, Owada, Fukunaga, Kondo (bib30) 2007; 57
Racioppi, Means (bib44) 2008; 29
Stark, Eichler, Roux, Fujisawa, Rotstein, Buzsáki (bib48) 2013; 80
Bhat, Dao, Terrillion, Arad, Smith, Soldatov, Gould (bib6) 2012; 99
Deisseroth, Heist, Tsien (bib18) 1998; 392
Aponte, Bischofberger, Jonas (bib3) 2008; 586
Deisseroth, Bito, Tsien (bib17) 1996; 16
Adler, Augustine, Duffy, Charlton (bib1) 1991; 11
Kawanishi, Harada, Tachikawa, Okubo, Shiraishi (bib32) 1999; 44
Wayman, Lee, Tokumitsu, Silva, Soderling (bib55) 2008; 59
D’amour, Froemke (bib15) 2015; 86
Luo, Li, Huang, Steinberg, Mattheisen, Liang, Donohoe, Shi, Chen, Yue (bib39) 2014; 19
Cohen, Tsien, Goff, Halassa (bib14) 2015; 167
Wayman, Impey, Marks, Saneyoshi, Grant, Derkach, Soderling (bib54) 2006; 50
Li, Xiong, Ibrahim, Yuan, Tao, Zhang (bib38) 2015; 25
Buzsáki, Chrobak (bib9) 1995; 5
Beasley, Zhang, Patten, Reynolds (bib4) 2002; 52
Mullins, Fishell, Tsien (bib60) 2016; 89
De Marco García, Karayannis, Fishell (bib16) 2011; 472
Johannessen, Delghandi, Moens (bib28) 2004; 16
Stedman, Uboha, Stedman, Nairn, Picciotto (bib49) 2004; 566
Zhang, Zhang, McQuade, Behbehani, Tsien, Xu (bib59) 2002; 30
Broadbelt, Jones (bib8) 2008; 42
Carlén, Meletis, Siegle, Cardin, Futai, Vierling-Claassen, Rühlmann, Jones, Deisseroth, Sheng (bib10) 2012; 17
Plath, Ohana, Dammermann, Errington, Schmitz, Gross, Mao, Engelsberg, Mahlke, Welzl (bib43) 2006; 52
Wang, Campos, Jamieson, Kaetzel, Dedman (bib53) 1995; 270
Bito, Deisseroth, Tsien (bib7) 1996; 87
Impey, McCorkle, Cha-Molstad, Dwyer, Yochum, Boss, McWeeney, Dunn, Mandel, Goodman (bib24) 2004; 119
Mikhaylova, Karpova, Bär, Bethge, YuanXiang, Chen, Zuschratter, Behnisch, Kreutz (bib41) 2014; 219
Wheeler, Barrett, Groth, Safa, Tsien (bib56) 2008; 183
Bhat (10.1016/j.neuron.2016.03.001_bib6) 2012; 99
Aponte (10.1016/j.neuron.2016.03.001_bib3) 2008; 586
Li (10.1016/j.neuron.2016.03.001_bib38) 2015; 25
Yu (10.1016/j.neuron.2016.03.001_bib58) 2014; 84
Adler (10.1016/j.neuron.2016.03.001_bib1) 1991; 11
Wayman (10.1016/j.neuron.2016.03.001_bib55) 2008; 59
Wheeler (10.1016/j.neuron.2016.03.001_bib56) 2008; 183
Spiegel (10.1016/j.neuron.2016.03.001_bib47) 2014; 157
Kamata (10.1016/j.neuron.2016.03.001_bib30) 2007; 57
Wheeler (10.1016/j.neuron.2016.03.001_bib57) 2012; 149
Lewis (10.1016/j.neuron.2016.03.001_bib36) 2012; 35
Cohen (10.1016/j.neuron.2016.03.001_bib13) 2015; 460
Benes (10.1016/j.neuron.2016.03.001_bib5) 2001; 25
Mullins (10.1016/j.neuron.2016.03.001_bib60) 2016; 89
Racioppi (10.1016/j.neuron.2016.03.001_bib44) 2008; 29
Stark (10.1016/j.neuron.2016.03.001_bib48) 2013; 80
Kinney (10.1016/j.neuron.2016.03.001_bib33) 2006; 26
Waltes (10.1016/j.neuron.2016.03.001_bib52) 2014; 133
Ch’ng (10.1016/j.neuron.2016.03.001_bib11) 2012; 150
Jones (10.1016/j.neuron.2016.03.001_bib29) 1994; 14
Buzsáki (10.1016/j.neuron.2016.03.001_bib9) 1995; 5
Hong (10.1016/j.neuron.2016.03.001_bib23) 2008; 60
De Marco García (10.1016/j.neuron.2016.03.001_bib16) 2011; 472
Stedman (10.1016/j.neuron.2016.03.001_bib49) 2004; 566
Deisseroth (10.1016/j.neuron.2016.03.001_bib17) 1996; 16
Gao (10.1016/j.neuron.2016.03.001_bib20) 2006; 345
Wayman (10.1016/j.neuron.2016.03.001_bib54) 2006; 50
Plath (10.1016/j.neuron.2016.03.001_bib43) 2006; 52
Jiao (10.1016/j.neuron.2016.03.001_bib27) 2011; 108
Kawaguchi (10.1016/j.neuron.2016.03.001_bib31) 1987; 416
Impey (10.1016/j.neuron.2016.03.001_bib24) 2004; 119
Beasley (10.1016/j.neuron.2016.03.001_bib4) 2002; 52
D’amour (10.1016/j.neuron.2016.03.001_bib15) 2015; 86
Takemoto-Kimura (10.1016/j.neuron.2016.03.001_bib51) 2007; 54
Royer (10.1016/j.neuron.2016.03.001_bib45) 2012; 15
Kawanishi (10.1016/j.neuron.2016.03.001_bib32) 1999; 44
Ma (10.1016/j.neuron.2016.03.001_bib40) 2014; 159
Luo (10.1016/j.neuron.2016.03.001_bib39) 2014; 19
Donato (10.1016/j.neuron.2016.03.001_bib19) 2013; 504
Jiang (10.1016/j.neuron.2016.03.001_bib25) 2006; 1
Takemoto-Kimura (10.1016/j.neuron.2016.03.001_bib50) 2003; 278
Jiang (10.1016/j.neuron.2016.03.001_bib26) 2005; 135
Klausberger (10.1016/j.neuron.2016.03.001_bib34) 2008; 321
Wang (10.1016/j.neuron.2016.03.001_bib53) 1995; 270
Agassandian (10.1016/j.neuron.2016.03.001_bib2) 2012; 23
Lau (10.1016/j.neuron.2016.03.001_bib35) 2012; 32
Bito (10.1016/j.neuron.2016.03.001_bib7) 1996; 87
Hashimoto (10.1016/j.neuron.2016.03.001_bib22) 2003; 23
Broadbelt (10.1016/j.neuron.2016.03.001_bib8) 2008; 42
Patz (10.1016/j.neuron.2016.03.001_bib42) 2004; 14
Deisseroth (10.1016/j.neuron.2016.03.001_bib18) 1998; 392
Zhang (10.1016/j.neuron.2016.03.001_bib59) 2002; 30
Schild (10.1016/j.neuron.2016.03.001_bib46) 2014; 84
Mikhaylova (10.1016/j.neuron.2016.03.001_bib41) 2014; 219
Carlén (10.1016/j.neuron.2016.03.001_bib10) 2012; 17
Gu (10.1016/j.neuron.2016.03.001_bib21) 1995; 375
Cohen (10.1016/j.neuron.2016.03.001_bib14) 2015; 167
Li (10.1016/j.neuron.2016.03.001_bib37) 2016; 351
Cohen (10.1016/j.neuron.2016.03.001_bib12) 2008; 24
Johannessen (10.1016/j.neuron.2016.03.001_bib28) 2004; 16
25583246 - Schizophr Res. 2015 Sep;167(1-3):98-107
18616423 - Annu Rev Cell Dev Biol. 2008;24:183-209
24442360 - Hum Genet. 2014 Jun;133(6):781-92
24855953 - Cell. 2014 May 22;157(5):1216-29
9515967 - Nature. 1998 Mar 12;392(6672):198-202
22723692 - J Neurosci. 2012 Jun 20;32(25):8521-31
10570922 - J Hum Genet. 1999;44(6):428-30
23958956 - Mol Psychiatry. 2014 Jul;19(7):774-83
21730187 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12131-6
16730662 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1606-10
16772171 - Neuron. 2006 Jun 15;50(6):897-909
18276734 - J Physiol. 2008 Apr 15;586(8):2061-75
17553424 - Neuron. 2007 Jun 7;54(5):755-70
23539133 - Brain Struct Funct. 2014 May;219(3):843-60
17088210 - Neuron. 2006 Nov 9;52(3):437-44
25303525 - Cell. 2014 Oct 9;159(2):281-94
22632974 - Cell. 2012 May 25;149(5):1112-24
22446878 - Nat Neurosci. 2012 May;15(5):769-75
22621903 - Mol Biol Cell. 2012 Jul;23(14):2755-69
24336286 - Nature. 2013 Dec 12;504(7479):272-6
14754872 - Cereb Cortex. 2004 Mar;14(3):342-51
17406298 - Nat Protoc. 2006;1(2):695-700
12637513 - J Biol Chem. 2003 May 16;278(20):18597-605
25998737 - Biochem Biophys Res Commun. 2015 Apr 24;460(1):88-99
24314731 - Neuron. 2013 Dec 4;80(5):1263-76
22770221 - Cell. 2012 Jul 6;150(1):207-21
11925568 - Nat Genet. 2002 Apr;30(4):416-20
8530438 - J Biol Chem. 1995 Dec 22;270(51):30245-8
21468034 - Mol Psychiatry. 2012 May;17(5):537-48
15337521 - Cell Signal. 2004 Nov;16(11):1211-27
11377916 - Neuropsychopharmacology. 2001 Jul;25(1):1-27
25467982 - Neuron. 2014 Dec 3;84(5):983-96
7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10
18289558 - J Psychiatr Res. 2008 Jul;42(8):612-21
21460837 - Nature. 2011 Apr 21;472(7343):351-5
15147908 - FEBS Lett. 2004 May 21;566(1-3):275-80
18599766 - Science. 2008 Jul 4;321(5885):53-7
25467978 - Neuron. 2014 Dec 3;84(5):919-26
17056143 - Neurosci Res. 2007 Jan;57(1):86-97
12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15
16154277 - Neuroscience. 2005;135(3):839-50
8301355 - J Neurosci. 1994 Feb;14(2):611-29
7596410 - Nature. 1995 Jun 29;375(6534):784-7
19047462 - J Cell Biol. 2008 Dec 1;183(5):849-63
25843405 - Neuron. 2015 Apr 22;86(2):514-28
3304536 - Brain Res. 1987 Jul 28;416(2):369-74
12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26
18930438 - Trends Immunol. 2008 Dec;29(12):600-7
24425250 - Cereb Cortex. 2015 Jul;25(7):1782-91
22154068 - Trends Neurosci. 2012 Jan;35(1):57-67
22705413 - Prog Neurobiol. 2012 Oct;99(1):1-14
16452684 - J Neurosci. 2006 Feb 1;26(5):1604-15
19038219 - Neuron. 2008 Nov 26;60(4):610-24
18817731 - Neuron. 2008 Sep 25;59(6):914-31
8980227 - Cell. 1996 Dec 27;87(7):1203-14
1675264 - J Neurosci. 1991 Jun;11(6):1496-507
8562094 - Neuron. 1996 Jan;16(1):89-101
15620361 - Cell. 2004 Dec 29;119(7):1041-54
References_xml – volume: 86
  start-page: 514
  year: 2015
  end-page: 528
  ident: bib15
  article-title: Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex
  publication-title: Neuron
– volume: 133
  start-page: 781
  year: 2014
  end-page: 792
  ident: bib52
  article-title: Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders
  publication-title: Hum. Genet.
– volume: 16
  start-page: 89
  year: 1996
  end-page: 101
  ident: bib17
  article-title: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity
  publication-title: Neuron
– volume: 59
  start-page: 914
  year: 2008
  end-page: 931
  ident: bib55
  article-title: Calmodulin-kinases: modulators of neuronal development and plasticity
  publication-title: Neuron
– volume: 351
  start-page: 863
  year: 2016
  end-page: 867
  ident: bib37
  article-title: A slow coincidence detector that requires Ca2+ channel flux and conformational signals
  publication-title: Science
– volume: 108
  start-page: 12131
  year: 2011
  end-page: 12136
  ident: bib27
  article-title: A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 610
  year: 2008
  end-page: 624
  ident: bib23
  article-title: A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition
  publication-title: Neuron
– volume: 54
  start-page: 755
  year: 2007
  end-page: 770
  ident: bib51
  article-title: Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma
  publication-title: Neuron
– volume: 32
  start-page: 8521
  year: 2012
  end-page: 8531
  ident: bib35
  article-title: Activity-dependent regulation of inhibition via GAD67
  publication-title: J. Neurosci.
– volume: 167
  start-page: 98
  year: 2015
  end-page: 107
  ident: bib14
  article-title: The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia
  publication-title: Schizophr. Res.
– volume: 80
  start-page: 1263
  year: 2013
  end-page: 1276
  ident: bib48
  article-title: Inhibition-induced theta resonance in cortical circuits
  publication-title: Neuron
– volume: 23
  start-page: 2755
  year: 2012
  end-page: 2769
  ident: bib2
  article-title: Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal
  publication-title: Mol. Biol. Cell
– volume: 416
  start-page: 369
  year: 1987
  end-page: 374
  ident: bib31
  article-title: Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin
  publication-title: Brain Res.
– volume: 50
  start-page: 897
  year: 2006
  end-page: 909
  ident: bib54
  article-title: Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2
  publication-title: Neuron
– volume: 119
  start-page: 1041
  year: 2004
  end-page: 1054
  ident: bib24
  article-title: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions
  publication-title: Cell
– volume: 11
  start-page: 1496
  year: 1991
  end-page: 1507
  ident: bib1
  article-title: Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse
  publication-title: J. Neurosci.
– volume: 89
  start-page: 1131
  year: 2016
  end-page: 1156
  ident: bib60
  article-title: Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops
  publication-title: Neuron
– volume: 472
  start-page: 351
  year: 2011
  end-page: 355
  ident: bib16
  article-title: Neuronal activity is required for the development of specific cortical interneuron subtypes
  publication-title: Nature
– volume: 99
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib6
  article-title: CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease
  publication-title: Prog. Neurobiol.
– volume: 183
  start-page: 849
  year: 2008
  end-page: 863
  ident: bib56
  article-title: CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling
  publication-title: J. Cell Biol.
– volume: 504
  start-page: 272
  year: 2013
  end-page: 276
  ident: bib19
  article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning
  publication-title: Nature
– volume: 44
  start-page: 428
  year: 1999
  end-page: 430
  ident: bib32
  article-title: Novel variants in the promoter region of the CREB gene in schizophrenic patients
  publication-title: J. Hum. Genet.
– volume: 150
  start-page: 207
  year: 2012
  end-page: 221
  ident: bib11
  article-title: Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus
  publication-title: Cell
– volume: 14
  start-page: 611
  year: 1994
  end-page: 629
  ident: bib29
  article-title: Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression
  publication-title: J. Neurosci.
– volume: 5
  start-page: 504
  year: 1995
  end-page: 510
  ident: bib9
  article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks
  publication-title: Curr. Opin. Neurobiol.
– volume: 52
  start-page: 708
  year: 2002
  end-page: 715
  ident: bib4
  article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins
  publication-title: Biol. Psychiatry
– volume: 16
  start-page: 1211
  year: 2004
  end-page: 1227
  ident: bib28
  article-title: What turns CREB on?
  publication-title: Cell. Signal.
– volume: 392
  start-page: 198
  year: 1998
  end-page: 202
  ident: bib18
  article-title: Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons
  publication-title: Nature
– volume: 375
  start-page: 784
  year: 1995
  end-page: 787
  ident: bib21
  article-title: Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients
  publication-title: Nature
– volume: 87
  start-page: 1203
  year: 1996
  end-page: 1214
  ident: bib7
  article-title: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression
  publication-title: Cell
– volume: 321
  start-page: 53
  year: 2008
  end-page: 57
  ident: bib34
  article-title: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations
  publication-title: Science
– volume: 278
  start-page: 18597
  year: 2003
  end-page: 18605
  ident: bib50
  article-title: Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK)
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 612
  year: 2008
  end-page: 621
  ident: bib8
  article-title: Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex
  publication-title: J. Psychiatr. Res.
– volume: 84
  start-page: 919
  year: 2014
  end-page: 926
  ident: bib58
  article-title: CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron
  publication-title: Neuron
– volume: 586
  start-page: 2061
  year: 2008
  end-page: 2075
  ident: bib3
  article-title: Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus
  publication-title: J. Physiol.
– volume: 26
  start-page: 1604
  year: 2006
  end-page: 1615
  ident: bib33
  article-title: A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons
  publication-title: J. Neurosci.
– volume: 35
  start-page: 57
  year: 2012
  end-page: 67
  ident: bib36
  article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia
  publication-title: Trends Neurosci.
– volume: 219
  start-page: 843
  year: 2014
  end-page: 860
  ident: bib41
  article-title: Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain
  publication-title: Brain Struct. Funct.
– volume: 15
  start-page: 769
  year: 2012
  end-page: 775
  ident: bib45
  article-title: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition
  publication-title: Nat. Neurosci.
– volume: 25
  start-page: 1
  year: 2001
  end-page: 27
  ident: bib5
  article-title: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder
  publication-title: Neuropsychopharmacology
– volume: 29
  start-page: 600
  year: 2008
  end-page: 607
  ident: bib44
  article-title: Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller
  publication-title: Trends Immunol.
– volume: 84
  start-page: 983
  year: 2014
  end-page: 996
  ident: bib46
  article-title: The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance
  publication-title: Neuron
– volume: 157
  start-page: 1216
  year: 2014
  end-page: 1229
  ident: bib47
  article-title: Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs
  publication-title: Cell
– volume: 23
  start-page: 6315
  year: 2003
  end-page: 6326
  ident: bib22
  article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia
  publication-title: J. Neurosci.
– volume: 159
  start-page: 281
  year: 2014
  end-page: 294
  ident: bib40
  article-title: γCaMKII shuttles Ca
  publication-title: Cell
– volume: 30
  start-page: 416
  year: 2002
  end-page: 420
  ident: bib59
  article-title: c-fos regulates neuronal excitability and survival
  publication-title: Nat. Genet.
– volume: 345
  start-page: 1606
  year: 2006
  end-page: 1610
  ident: bib20
  article-title: CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 14
  start-page: 342
  year: 2004
  end-page: 351
  ident: bib42
  article-title: Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development
  publication-title: Cereb. Cortex
– volume: 149
  start-page: 1112
  year: 2012
  end-page: 1124
  ident: bib57
  article-title: Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression
  publication-title: Cell
– volume: 25
  start-page: 1782
  year: 2015
  end-page: 1791
  ident: bib38
  article-title: Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex
  publication-title: Cereb. Cortex
– volume: 19
  start-page: 774
  year: 2014
  end-page: 783
  ident: bib39
  article-title: Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene
  publication-title: Mol. Psychiatry
– volume: 566
  start-page: 275
  year: 2004
  end-page: 280
  ident: bib49
  article-title: Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain
  publication-title: FEBS Lett.
– volume: 17
  start-page: 537
  year: 2012
  end-page: 548
  ident: bib10
  article-title: A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior
  publication-title: Mol. Psychiatry
– volume: 270
  start-page: 30245
  year: 1995
  end-page: 30248
  ident: bib53
  article-title: Functional elimination of calmodulin within the nucleus by targeted expression of an inhibitor peptide
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 183
  year: 2008
  end-page: 209
  ident: bib12
  article-title: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 460
  start-page: 88
  year: 2015
  end-page: 99
  ident: bib13
  article-title: Evolutionary and functional perspectives on signaling from neuronal surface to nucleus
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 1
  start-page: 695
  year: 2006
  end-page: 700
  ident: bib25
  article-title: High Ca2+-phosphate transfection efficiency in low-density neuronal cultures
  publication-title: Nat. Protoc.
– volume: 135
  start-page: 839
  year: 2005
  end-page: 850
  ident: bib26
  article-title: A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons
  publication-title: Neuroscience
– volume: 57
  start-page: 86
  year: 2007
  end-page: 97
  ident: bib30
  article-title: Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth
  publication-title: Neurosci. Res.
– volume: 52
  start-page: 437
  year: 2006
  end-page: 444
  ident: bib43
  article-title: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories
  publication-title: Neuron
– volume: 35
  start-page: 57
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib36
  article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.10.004
– volume: 89
  start-page: 1131
  year: 2016
  ident: 10.1016/j.neuron.2016.03.001_bib60
  article-title: Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.017
– volume: 50
  start-page: 897
  year: 2006
  ident: 10.1016/j.neuron.2016.03.001_bib54
  article-title: Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.05.008
– volume: 472
  start-page: 351
  year: 2011
  ident: 10.1016/j.neuron.2016.03.001_bib16
  article-title: Neuronal activity is required for the development of specific cortical interneuron subtypes
  publication-title: Nature
  doi: 10.1038/nature09865
– volume: 586
  start-page: 2061
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib3
  article-title: Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.147298
– volume: 14
  start-page: 342
  year: 2004
  ident: 10.1016/j.neuron.2016.03.001_bib42
  article-title: Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg132
– volume: 157
  start-page: 1216
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib47
  article-title: Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.058
– volume: 57
  start-page: 86
  year: 2007
  ident: 10.1016/j.neuron.2016.03.001_bib30
  article-title: Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2006.09.013
– volume: 566
  start-page: 275
  year: 2004
  ident: 10.1016/j.neuron.2016.03.001_bib49
  article-title: Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.04.042
– volume: 135
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuron.2016.03.001_bib26
  article-title: A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.06.073
– volume: 416
  start-page: 369
  year: 1987
  ident: 10.1016/j.neuron.2016.03.001_bib31
  article-title: Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(87)90921-8
– volume: 84
  start-page: 983
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib46
  article-title: The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.039
– volume: 25
  start-page: 1782
  year: 2015
  ident: 10.1016/j.neuron.2016.03.001_bib38
  article-title: Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht417
– volume: 23
  start-page: 2755
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib2
  article-title: Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-10-0863
– volume: 1
  start-page: 695
  year: 2006
  ident: 10.1016/j.neuron.2016.03.001_bib25
  article-title: High Ca2+-phosphate transfection efficiency in low-density neuronal cultures
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.86
– volume: 321
  start-page: 53
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib34
  article-title: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations
  publication-title: Science
  doi: 10.1126/science.1149381
– volume: 270
  start-page: 30245
  year: 1995
  ident: 10.1016/j.neuron.2016.03.001_bib53
  article-title: Functional elimination of calmodulin within the nucleus by targeted expression of an inhibitor peptide
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.51.30245
– volume: 375
  start-page: 784
  year: 1995
  ident: 10.1016/j.neuron.2016.03.001_bib21
  article-title: Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients
  publication-title: Nature
  doi: 10.1038/375784a0
– volume: 84
  start-page: 919
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib58
  article-title: CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.046
– volume: 25
  start-page: 1
  year: 2001
  ident: 10.1016/j.neuron.2016.03.001_bib5
  article-title: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(01)00225-1
– volume: 26
  start-page: 1604
  year: 2006
  ident: 10.1016/j.neuron.2016.03.001_bib33
  article-title: A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4722-05.2006
– volume: 54
  start-page: 755
  year: 2007
  ident: 10.1016/j.neuron.2016.03.001_bib51
  article-title: Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.05.021
– volume: 87
  start-page: 1203
  year: 1996
  ident: 10.1016/j.neuron.2016.03.001_bib7
  article-title: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81816-4
– volume: 159
  start-page: 281
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib40
  article-title: γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.019
– volume: 52
  start-page: 708
  year: 2002
  ident: 10.1016/j.neuron.2016.03.001_bib4
  article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(02)01360-4
– volume: 99
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib6
  article-title: CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2012.06.001
– volume: 278
  start-page: 18597
  year: 2003
  ident: 10.1016/j.neuron.2016.03.001_bib50
  article-title: Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M300578200
– volume: 23
  start-page: 6315
  year: 2003
  ident: 10.1016/j.neuron.2016.03.001_bib22
  article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-15-06315.2003
– volume: 150
  start-page: 207
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib11
  article-title: Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.027
– volume: 29
  start-page: 600
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib44
  article-title: Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2008.08.005
– volume: 32
  start-page: 8521
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib35
  article-title: Activity-dependent regulation of inhibition via GAD67
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1245-12.2012
– volume: 5
  start-page: 504
  year: 1995
  ident: 10.1016/j.neuron.2016.03.001_bib9
  article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/0959-4388(95)80012-3
– volume: 24
  start-page: 183
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib12
  article-title: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.24.110707.175235
– volume: 108
  start-page: 12131
  year: 2011
  ident: 10.1016/j.neuron.2016.03.001_bib27
  article-title: A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1105296108
– volume: 17
  start-page: 537
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib10
  article-title: A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2011.31
– volume: 42
  start-page: 612
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib8
  article-title: Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2007.07.006
– volume: 345
  start-page: 1606
  year: 2006
  ident: 10.1016/j.neuron.2016.03.001_bib20
  article-title: CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.05.066
– volume: 86
  start-page: 514
  year: 2015
  ident: 10.1016/j.neuron.2016.03.001_bib15
  article-title: Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.014
– volume: 52
  start-page: 437
  year: 2006
  ident: 10.1016/j.neuron.2016.03.001_bib43
  article-title: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.08.024
– volume: 59
  start-page: 914
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib55
  article-title: Calmodulin-kinases: modulators of neuronal development and plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.08.021
– volume: 183
  start-page: 849
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib56
  article-title: CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200805048
– volume: 149
  start-page: 1112
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib57
  article-title: Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.041
– volume: 60
  start-page: 610
  year: 2008
  ident: 10.1016/j.neuron.2016.03.001_bib23
  article-title: A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.024
– volume: 14
  start-page: 611
  year: 1994
  ident: 10.1016/j.neuron.2016.03.001_bib29
  article-title: Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-02-00611.1994
– volume: 80
  start-page: 1263
  year: 2013
  ident: 10.1016/j.neuron.2016.03.001_bib48
  article-title: Inhibition-induced theta resonance in cortical circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.033
– volume: 504
  start-page: 272
  year: 2013
  ident: 10.1016/j.neuron.2016.03.001_bib19
  article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning
  publication-title: Nature
  doi: 10.1038/nature12866
– volume: 133
  start-page: 781
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib52
  article-title: Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-013-1416-y
– volume: 351
  start-page: 863
  year: 2016
  ident: 10.1016/j.neuron.2016.03.001_bib37
  article-title: A slow coincidence detector that requires Ca2+ channel flux and conformational signals
  publication-title: Science
  doi: 10.1126/science.aad3647
– volume: 19
  start-page: 774
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib39
  article-title: Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.103
– volume: 16
  start-page: 1211
  year: 2004
  ident: 10.1016/j.neuron.2016.03.001_bib28
  article-title: What turns CREB on?
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2004.05.001
– volume: 44
  start-page: 428
  year: 1999
  ident: 10.1016/j.neuron.2016.03.001_bib32
  article-title: Novel variants in the promoter region of the CREB gene in schizophrenic patients
  publication-title: J. Hum. Genet.
  doi: 10.1007/s100380050196
– volume: 167
  start-page: 98
  year: 2015
  ident: 10.1016/j.neuron.2016.03.001_bib14
  article-title: The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.12.026
– volume: 219
  start-page: 843
  year: 2014
  ident: 10.1016/j.neuron.2016.03.001_bib41
  article-title: Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0539-1
– volume: 460
  start-page: 88
  year: 2015
  ident: 10.1016/j.neuron.2016.03.001_bib13
  article-title: Evolutionary and functional perspectives on signaling from neuronal surface to nucleus
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.02.146
– volume: 119
  start-page: 1041
  year: 2004
  ident: 10.1016/j.neuron.2016.03.001_bib24
  article-title: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions
  publication-title: Cell
– volume: 392
  start-page: 198
  year: 1998
  ident: 10.1016/j.neuron.2016.03.001_bib18
  article-title: Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons
  publication-title: Nature
  doi: 10.1038/32448
– volume: 15
  start-page: 769
  year: 2012
  ident: 10.1016/j.neuron.2016.03.001_bib45
  article-title: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3077
– volume: 30
  start-page: 416
  year: 2002
  ident: 10.1016/j.neuron.2016.03.001_bib59
  article-title: c-fos regulates neuronal excitability and survival
  publication-title: Nat. Genet.
  doi: 10.1038/ng859
– volume: 11
  start-page: 1496
  year: 1991
  ident: 10.1016/j.neuron.2016.03.001_bib1
  article-title: Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.11-06-01496.1991
– volume: 16
  start-page: 89
  year: 1996
  ident: 10.1016/j.neuron.2016.03.001_bib17
  article-title: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80026-4
– reference: 24314731 - Neuron. 2013 Dec 4;80(5):1263-76
– reference: 23958956 - Mol Psychiatry. 2014 Jul;19(7):774-83
– reference: 22705413 - Prog Neurobiol. 2012 Oct;99(1):1-14
– reference: 12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15
– reference: 7596410 - Nature. 1995 Jun 29;375(6534):784-7
– reference: 8980227 - Cell. 1996 Dec 27;87(7):1203-14
– reference: 12637513 - J Biol Chem. 2003 May 16;278(20):18597-605
– reference: 9515967 - Nature. 1998 Mar 12;392(6672):198-202
– reference: 22621903 - Mol Biol Cell. 2012 Jul;23(14):2755-69
– reference: 18276734 - J Physiol. 2008 Apr 15;586(8):2061-75
– reference: 22154068 - Trends Neurosci. 2012 Jan;35(1):57-67
– reference: 15147908 - FEBS Lett. 2004 May 21;566(1-3):275-80
– reference: 24336286 - Nature. 2013 Dec 12;504(7479):272-6
– reference: 25998737 - Biochem Biophys Res Commun. 2015 Apr 24;460(1):88-99
– reference: 8562094 - Neuron. 1996 Jan;16(1):89-101
– reference: 21468034 - Mol Psychiatry. 2012 May;17(5):537-48
– reference: 8530438 - J Biol Chem. 1995 Dec 22;270(51):30245-8
– reference: 16730662 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1606-10
– reference: 22446878 - Nat Neurosci. 2012 May;15(5):769-75
– reference: 17056143 - Neurosci Res. 2007 Jan;57(1):86-97
– reference: 24425250 - Cereb Cortex. 2015 Jul;25(7):1782-91
– reference: 1675264 - J Neurosci. 1991 Jun;11(6):1496-507
– reference: 19038219 - Neuron. 2008 Nov 26;60(4):610-24
– reference: 18289558 - J Psychiatr Res. 2008 Jul;42(8):612-21
– reference: 15620361 - Cell. 2004 Dec 29;119(7):1041-54
– reference: 21730187 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12131-6
– reference: 22770221 - Cell. 2012 Jul 6;150(1):207-21
– reference: 8301355 - J Neurosci. 1994 Feb;14(2):611-29
– reference: 16452684 - J Neurosci. 2006 Feb 1;26(5):1604-15
– reference: 22632974 - Cell. 2012 May 25;149(5):1112-24
– reference: 14754872 - Cereb Cortex. 2004 Mar;14(3):342-51
– reference: 25843405 - Neuron. 2015 Apr 22;86(2):514-28
– reference: 11377916 - Neuropsychopharmacology. 2001 Jul;25(1):1-27
– reference: 23539133 - Brain Struct Funct. 2014 May;219(3):843-60
– reference: 18930438 - Trends Immunol. 2008 Dec;29(12):600-7
– reference: 11925568 - Nat Genet. 2002 Apr;30(4):416-20
– reference: 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10
– reference: 16772171 - Neuron. 2006 Jun 15;50(6):897-909
– reference: 17406298 - Nat Protoc. 2006;1(2):695-700
– reference: 17553424 - Neuron. 2007 Jun 7;54(5):755-70
– reference: 25467982 - Neuron. 2014 Dec 3;84(5):983-96
– reference: 18616423 - Annu Rev Cell Dev Biol. 2008;24:183-209
– reference: 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26
– reference: 15337521 - Cell Signal. 2004 Nov;16(11):1211-27
– reference: 25467978 - Neuron. 2014 Dec 3;84(5):919-26
– reference: 25303525 - Cell. 2014 Oct 9;159(2):281-94
– reference: 25583246 - Schizophr Res. 2015 Sep;167(1-3):98-107
– reference: 3304536 - Brain Res. 1987 Jul 28;416(2):369-74
– reference: 21460837 - Nature. 2011 Apr 21;472(7343):351-5
– reference: 16154277 - Neuroscience. 2005;135(3):839-50
– reference: 18599766 - Science. 2008 Jul 4;321(5885):53-7
– reference: 24442360 - Hum Genet. 2014 Jun;133(6):781-92
– reference: 18817731 - Neuron. 2008 Sep 25;59(6):914-31
– reference: 22723692 - J Neurosci. 2012 Jun 20;32(25):8521-31
– reference: 10570922 - J Hum Genet. 1999;44(6):428-30
– reference: 17088210 - Neuron. 2006 Nov 9;52(3):437-44
– reference: 24855953 - Cell. 2014 May 22;157(5):1216-29
– reference: 19047462 - J Cell Biol. 2008 Dec 1;183(5):849-63
SSID ssj0014591
Score 2.480313
Snippet Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development,...
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms Acoustic Stimulation
Animals
Auditory Cortex - metabolism
Calcium - metabolism
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Caveolin 1 - physiology
Cyclic AMP Response Element-Binding Protein - metabolism
Experiments
Gene expression
Immunoglobulins
Interneurons - metabolism
Interneurons - physiology
Isoenzymes - metabolism
Kinases
Mice
Neurons
Neurons - metabolism
Neurons - physiology
Parvalbumins - metabolism
Phosphorylation
Rats
Signal Transduction
Statistical analysis
Transcription, Genetic - physiology
Title Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons
URI https://dx.doi.org/10.1016/j.neuron.2016.03.001
https://www.ncbi.nlm.nih.gov/pubmed/27041500
https://www.proquest.com/docview/1785527884
https://www.proquest.com/docview/1783920995
https://www.proquest.com/docview/1787977772
https://pubmed.ncbi.nlm.nih.gov/PMC4866871
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIPgiuvlxdUoE8S3ctEnT9HHebQxll4EO7lvJbVJXmenY7Z3e_8M_2HOStngVHfhSaHNacprkfCTn_A4hbzJRg9ntlkwqkcMlcUyrpGLGCiN1oTNucL_jbK5OL-T7RbbYIbMhFwbDKnvZH2V6kNb9k2n_N6fXTTP9yHWB6OUiQZ2t-QLkMGaVYhLf4t14kiCzWDUPiBlSD-lzIcYrYEYiCmqiItRp8jf19Kf5-XsU5S9q6eQhedDbk_QwdvkR2XF-j-wfevClv27oWxoiPMPW-R65FwtPbvbJj-PvVQ_OzYK2GmQHnbVrzNH9TBtPz7FuEG7hN56dh-CuW0fjFmLgaEVjveAVNXTe3rorOjNn9EPjQTOyo766bgef6S6_mQ09QnHiq45iSgvte9DebOg8fu0xuTg5_jQ7ZX19BlZlBccq9ryWLjUuVU6C2VentbUC_A9rec0TW-MCB_-qwmVvl4mujZaprTINE8AqIZ6QXd9694xQXRfQaMSyKgrpdKWX1tnaKKu1rFKlJ0QMw1IO_wdraFyVQ5TalzKyXuJgllxgsN6EsPGt6wjecQd9Pox4uTUJS9Avd7x5MEyQshcCqzLJNeLbAQsT8npshuWLZzLGu3YdaMBCBTM9-ydNDmY6-EET8jTOuZGdNEeMBc6h61uzcSRA-PDtFt9cBhhxqZUCd_n5fzP9gtzHOzxbS_kB2e1u1u4lmGjd8lVYgz8BUkA_Gg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEGIvCDZghQFGQrxZdb6dx9Ft6thaTWKT-ma5scOChjOt6aD_B38wd3YSURBM4iUP8SXy2ef7sM-_I-RdEpXgdps5i9Mog0dgmEiDgikdqVjkIuEK9zsm03R8EX-cJbMNMuruwmBaZav7vU532rp9M2xHc3hdVcNPXOSIXh4FaLMFn90j98Eb4Cjax7MP_VFCnPiyeUDNkLy7P-eSvBxoJMKgBqnHOg3-Zp_-9D9_T6P8xS4dPSaPWoeS7vs-PyEbxm6TnX0LwfTXFX1PXYqn2zvfJg985cnVDvlx-L1o0bmZM1ed8qCjeomXdD_TytIzLByEe_iVZWcuu-vWUL-H6DhaUF8weEEVnda35oqO1ISeVBZMIztoy-s28Jvm8pta0QPUJ7ZoKN5poW0P6psVnfq_PSUXR4fnozFrCzSwIsk5lrHnZWxCZcLUxOD3lWGpdQQBiNa85IEucYVDgFXgutfzQJRKxKEuEgESoNMoekY2bW3NLqGizKFRRfMiz2MjCjHXRpcq1ULERZiKAYm6aZHd-GARjSvZpal9kZ51iZMpeYTZegPC-q-uPXrHHfRZN-NyTQolGJg7vtzrBES2WmAhg0wgwB2wMCBv-2ZYv3goo6ypl44GXFTw05N_0mTgp0MgNCDPvcz17IQZgixwDl1fk8aeAPHD11tsdelwxGORphAvv_hvpt-Qh-Pzyak8PZ6evCRb2IIHbSHfI5vNzdK8An-tmb926_EnWIVCPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation-Transcription+Coupling+in+Parvalbumin-Positive+Interneurons+Employs+a+Novel+CaM+Kinase-Dependent+Pathway+Distinct+from+Excitatory+Neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Cohen%2C+Samuel+M&rft.au=Ma%2C+Huan&rft.au=Kuchibhotla%2C+Kishore+V&rft.au=Watson%2C+Brendon+O&rft.date=2016-04-20&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=90&rft.issue=2&rft.spage=292&rft_id=info:doi/10.1016%2Fj.neuron.2016.03.001&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4040349291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon