Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is po...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 90; no. 2; pp. 292 - 307 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.04.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2016.03.001 |
Cover
Abstract | Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
•Voltage-gated Ca2+ influx triggers nuclear translocation of CaM in PV+ interneurons•CaMK signaling promotes CREB phosphorylation and activates key genes in PV+ cells•γCaMKI, not γCaMKII, operates to shuttle CaM to the nucleus in PV+ cells•Low CaMKIV levels rate-limit CREB phosphorylation in PV+ cells
Activity-dependent gene regulation is critical for long-term plasticity. Cohen et al. demonstrate that PV+ cortical interneurons rely on a CaM kinase-dependent signaling pathway, hinging on γCaMKI and rate-limited by CaMKIV, to trigger CREB phosphorylation and gene expression. |
---|---|
AbstractList | Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by gamma CaMKI, not gamma CaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. •Voltage-gated Ca2+ influx triggers nuclear translocation of CaM in PV+ interneurons•CaMK signaling promotes CREB phosphorylation and activates key genes in PV+ cells•γCaMKI, not γCaMKII, operates to shuttle CaM to the nucleus in PV+ cells•Low CaMKIV levels rate-limit CREB phosphorylation in PV+ cells Activity-dependent gene regulation is critical for long-term plasticity. Cohen et al. demonstrate that PV+ cortical interneurons rely on a CaM kinase-dependent signaling pathway, hinging on γCaMKI and rate-limited by CaMKIV, to trigger CREB phosphorylation and gene expression. Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. Here, we report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca 2+ influx through Ca V 1 channels triggers CaM nuclear translocation via local Ca 2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca 2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. |
Author | Ma, Huan Watson, Brendon O. Froemke, Robert C. Kuchibhotla, Kishore V. Buzsáki, György Tsien, Richard W. Cohen, Samuel M. |
AuthorAffiliation | 3 The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Molecular Neurobiology Program, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA 4 Department of Psychiatry and Mind Brain Research Institute, Weill-Cornell Medical College, New York, NY, 10021, USA 2 Department of Physiology, Institute of Neuroscience, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China 1 NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA |
AuthorAffiliation_xml | – name: 3 The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, Molecular Neurobiology Program, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA – name: 4 Department of Psychiatry and Mind Brain Research Institute, Weill-Cornell Medical College, New York, NY, 10021, USA – name: 1 NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA – name: 2 Department of Physiology, Institute of Neuroscience, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China |
Author_xml | – sequence: 1 givenname: Samuel M. surname: Cohen fullname: Cohen, Samuel M. organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 2 givenname: Huan surname: Ma fullname: Ma, Huan organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 3 givenname: Kishore V. surname: Kuchibhotla fullname: Kuchibhotla, Kishore V. organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 4 givenname: Brendon O. surname: Watson fullname: Watson, Brendon O. organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 5 givenname: György surname: Buzsáki fullname: Buzsáki, György organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 6 givenname: Robert C. surname: Froemke fullname: Froemke, Robert C. organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA – sequence: 7 givenname: Richard W. surname: Tsien fullname: Tsien, Richard W. email: richard.tsien@nyumc.org organization: Department of Neuroscience and Physiology and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27041500$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URH_gDRCyxIZNBtuJ44QFEpoOUFFKF2Vteeyb1qPETm1nYN6DB8ajmUHQBeCNdeXvHh3fc0_RkfMOEHpOyYwSWr9ezRxMwbsZy9WMlDNC6CN0Qkkrioq27RE6IU1bFzUT5TE6jXGVgYq39Ak6ZoJUlBNygn4svmubVLLeFTdBuaiDHbcVnvtp7K27xdbhaxXWql9Og3XFtY822TXgC5cg7DxEvBjG3m8iVvjKr6HHc_UZf7JORSjOYQRnwKUsk-6-qQ0-tzFZpxPugh_w3oEPG3y1U3uKHneqj_Bsf5-hr-8XN_OPxeWXDxfzd5eF5i1JBS1JVwFTwGqouOAd64wpecONIR2hpiO8pDXjOs9LmCVtOtVUzGjeECVMXZZn6O1Od5yWAxidPQbVyzHYQYWN9MrKP1-cvZO3fi2rpq4bQbPAq71A8PcTxCQHGzX0vXLgpyipaEQr8mH_g5YtI23LM_ryAbryU3B5EluKcyaapsrUi9_N_3J9yDYDb3aADj7GAJ08JJ3_YntJidwuklzJXYhyu0iSlDLvSW6uHjQf9P_Rtp8o5NjWFoKM2oLTYGwAnaTx9u8CPwH7jOfB |
CitedBy_id | crossref_primary_10_1016_j_brainres_2016_11_006 crossref_primary_10_1152_jn_00287_2018 crossref_primary_10_1016_j_nlm_2019_107042 crossref_primary_10_1016_j_biopsych_2021_02_009 crossref_primary_10_1093_cercor_bhy227 crossref_primary_10_1038_s41467_018_04705_8 crossref_primary_10_3389_fnmol_2021_782206 crossref_primary_10_1016_j_tcb_2018_01_002 crossref_primary_10_1016_j_neubiorev_2021_11_021 crossref_primary_10_3389_fncel_2020_571216 crossref_primary_10_3389_fphar_2022_980449 crossref_primary_10_1038_s41598_019_47112_9 crossref_primary_10_1371_journal_pbio_2006387 crossref_primary_10_3389_fnsyn_2021_812905 crossref_primary_10_1016_j_biopsych_2024_02_003 crossref_primary_10_1016_j_neuron_2021_01_014 crossref_primary_10_18632_oncotarget_15405 crossref_primary_10_1016_j_neuron_2018_10_013 crossref_primary_10_7554_eLife_71443 crossref_primary_10_1016_j_conb_2018_11_001 crossref_primary_10_1038_s41467_018_05125_4 crossref_primary_10_3389_fnins_2022_1086994 crossref_primary_10_1038_nrn_2017_30 crossref_primary_10_1016_j_conb_2017_04_006 crossref_primary_10_3389_fnmol_2023_1298238 crossref_primary_10_1002_advs_202408618 crossref_primary_10_1523_JNEUROSCI_2599_17_2017 crossref_primary_10_1038_s41583_023_00742_5 crossref_primary_10_1152_physrev_00007_2017 crossref_primary_10_1523_ENEURO_0217_21_2021 crossref_primary_10_3390_ijms21041538 crossref_primary_10_3390_ijms232012328 crossref_primary_10_1016_j_nbd_2021_105382 crossref_primary_10_1111_apha_13282 crossref_primary_10_1016_j_neuron_2019_11_028 crossref_primary_10_1016_j_brainresbull_2017_11_016 crossref_primary_10_1111_jnc_14210 crossref_primary_10_3390_ijms26051831 crossref_primary_10_1016_j_conb_2016_12_009 crossref_primary_10_1038_s41419_024_07050_5 crossref_primary_10_1111_dgd_12571 crossref_primary_10_1016_j_celrep_2024_114701 crossref_primary_10_1101_cshperspect_a035287 crossref_primary_10_1073_pnas_2206217120 crossref_primary_10_1073_pnas_2022133118 crossref_primary_10_1073_pnas_2117435119 crossref_primary_10_1523_ENEURO_0135_21_2021 crossref_primary_10_1038_s41583_021_00467_3 crossref_primary_10_1007_s00429_021_02229_4 crossref_primary_10_1016_j_bbamcr_2016_12_004 crossref_primary_10_1523_JNEUROSCI_0572_22_2022 crossref_primary_10_1038_s41386_022_01274_9 crossref_primary_10_1523_JNEUROSCI_1883_20_2021 crossref_primary_10_1074_jbc_M117_788331 crossref_primary_10_3390_cells10082004 crossref_primary_10_1016_j_nlm_2021_107504 crossref_primary_10_1016_j_psychres_2024_116084 crossref_primary_10_1016_j_conb_2020_11_013 crossref_primary_10_1248_bpb_b22_00319 crossref_primary_10_3390_brainsci12081015 crossref_primary_10_1042_BST20231385 crossref_primary_10_1007_s12264_022_00840_x crossref_primary_10_1016_j_neuron_2016_03_036 crossref_primary_10_3389_fncir_2022_911023 crossref_primary_10_1016_j_celrep_2024_114151 crossref_primary_10_1016_j_nbd_2023_106170 crossref_primary_10_1038_s41467_019_12962_4 crossref_primary_10_1186_s13229_020_00323_8 crossref_primary_10_3389_fncel_2020_577525 crossref_primary_10_1016_j_biopsych_2019_01_006 crossref_primary_10_1016_j_celrep_2022_110678 crossref_primary_10_1016_j_cell_2020_05_013 crossref_primary_10_1016_j_celrep_2022_111643 |
Cites_doi | 10.1016/j.tins.2011.10.004 10.1016/j.neuron.2016.02.017 10.1016/j.neuron.2006.05.008 10.1038/nature09865 10.1113/jphysiol.2007.147298 10.1093/cercor/bhg132 10.1016/j.cell.2014.03.058 10.1016/j.neures.2006.09.013 10.1016/j.febslet.2004.04.042 10.1016/j.neuroscience.2005.06.073 10.1016/0006-8993(87)90921-8 10.1016/j.neuron.2014.10.039 10.1093/cercor/bht417 10.1091/mbc.E11-10-0863 10.1038/nprot.2006.86 10.1126/science.1149381 10.1074/jbc.270.51.30245 10.1038/375784a0 10.1016/j.neuron.2014.10.046 10.1016/S0893-133X(01)00225-1 10.1523/JNEUROSCI.4722-05.2006 10.1016/j.neuron.2007.05.021 10.1016/S0092-8674(00)81816-4 10.1016/j.cell.2014.09.019 10.1016/S0006-3223(02)01360-4 10.1016/j.pneurobio.2012.06.001 10.1074/jbc.M300578200 10.1523/JNEUROSCI.23-15-06315.2003 10.1016/j.cell.2012.05.027 10.1016/j.it.2008.08.005 10.1523/JNEUROSCI.1245-12.2012 10.1016/0959-4388(95)80012-3 10.1146/annurev.cellbio.24.110707.175235 10.1073/pnas.1105296108 10.1038/mp.2011.31 10.1016/j.jpsychires.2007.07.006 10.1016/j.bbrc.2006.05.066 10.1016/j.neuron.2015.03.014 10.1016/j.neuron.2006.08.024 10.1016/j.neuron.2008.08.021 10.1083/jcb.200805048 10.1016/j.cell.2012.03.041 10.1016/j.neuron.2008.09.024 10.1523/JNEUROSCI.14-02-00611.1994 10.1016/j.neuron.2013.09.033 10.1038/nature12866 10.1007/s00439-013-1416-y 10.1126/science.aad3647 10.1038/mp.2013.103 10.1016/j.cellsig.2004.05.001 10.1007/s100380050196 10.1016/j.schres.2014.12.026 10.1007/s00429-013-0539-1 10.1016/j.bbrc.2015.02.146 10.1038/32448 10.1038/nn.3077 10.1038/ng859 10.1523/JNEUROSCI.11-06-01496.1991 10.1016/S0896-6273(00)80026-4 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 20, 2016 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 20, 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2016.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 307 |
ExternalDocumentID | PMC4866871 4040349291 27041500 10_1016_j_neuron_2016_03_001 S089662731600180X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R37 MH071739 – fundername: NIGMS NIH HHS grantid: R01 GM058234 – fundername: NIGMS NIH HHS grantid: T32 GM007308 – fundername: NIDCD NIH HHS grantid: R01 DC012557 – fundername: NIDCD NIH HHS grantid: K99 DC015014 – fundername: NIMH NIH HHS grantid: R01 MH054671 – fundername: NIMH NIH HHS grantid: R01 MH071739 – fundername: NINDS NIH HHS grantid: R01 NS024067 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB 0SF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c590t-130f4e2ae26e4575f2fdd3585dd0f01df0531625c1017db18fa842dc580a7d633 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:06:44 EDT 2025 Thu Sep 04 21:00:02 EDT 2025 Thu Sep 04 19:53:17 EDT 2025 Sun Jul 13 05:08:14 EDT 2025 Thu Jan 02 23:11:27 EST 2025 Thu Apr 24 22:53:10 EDT 2025 Tue Jul 01 01:16:13 EDT 2025 Fri Feb 23 02:11:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-130f4e2ae26e4575f2fdd3585dd0f01df0531625c1017db18fa842dc580a7d633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S089662731600180X |
PMID | 27041500 |
PQID | 1785527884 |
PQPubID | 2031076 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4866871 proquest_miscellaneous_1787977772 proquest_miscellaneous_1783920995 proquest_journals_1785527884 pubmed_primary_27041500 crossref_citationtrail_10_1016_j_neuron_2016_03_001 crossref_primary_10_1016_j_neuron_2016_03_001 elsevier_sciencedirect_doi_10_1016_j_neuron_2016_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-20 |
PublicationDateYYYYMMDD | 2016-04-20 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Agassandian, Chen, Pulijala, Kaercher, Glasser, Mallampalli (bib2) 2012; 23 Klausberger, Somogyi (bib34) 2008; 321 Schild, Zbinden, Bell, Yu, Sengupta, Goodman, Glauser (bib46) 2014; 84 Kawaguchi, Katsumaru, Kosaka, Heizmann, Hama (bib31) 1987; 416 Waltes, Duketis, Knapp, Anney, Huguet, Schlitt, Jarczok, Sachse, Kämpfer, Kleinböck (bib52) 2014; 133 Kinney, Davis, Tabarean, Conti, Bartfai, Behrens (bib33) 2006; 26 Lewis, Curley, Glausier, Volk (bib36) 2012; 35 Cohen, Greenberg (bib12) 2008; 24 Cohen, Li, Tsien, Ma (bib13) 2015; 460 Lau, Murthy (bib35) 2012; 32 Jiang, Swann (bib26) 2005; 135 Yu, Bell, Glauser, Van Hooser, Goodman, Sengupta (bib58) 2014; 84 Benes, Berretta (bib5) 2001; 25 Jones, Huntley, Benson (bib29) 1994; 14 Donato, Rompani, Caroni (bib19) 2013; 504 Hashimoto, Volk, Eggan, Mirnics, Pierri, Sun, Sampson, Lewis (bib22) 2003; 23 Jiang, Chen (bib25) 2006; 1 Gu, Spitzer (bib21) 1995; 375 Ch’ng, Uzgil, Lin, Avliyakulov, O’Dell, Martin (bib11) 2012; 150 Takemoto-Kimura, Terai, Takamoto, Ohmae, Kikumura, Segi, Arakawa, Furuyashiki, Narumiya, Bito (bib50) 2003; 278 Ma, Groth, Cohen, Emery, Li, Hoedt, Zhang, Neubert, Tsien (bib40) 2014; 159 Patz, Grabert, Gorba, Wirth, Wahle (bib42) 2004; 14 Takemoto-Kimura, Ageta-Ishihara, Nonaka, Adachi-Morishima, Mano, Okamura, Fujii, Fuse, Hoshino, Suzuki (bib51) 2007; 54 Hong, McCord, Greenberg (bib23) 2008; 60 Spiegel, Mardinly, Gabel, Bazinet, Couch, Tzeng, Harmin, Greenberg (bib47) 2014; 157 Jiao, Zhang, Zhang, Wang, Sakata, Lu, Sun (bib27) 2011; 108 Gao, Blair, Marshall (bib20) 2006; 345 Royer, Zemelman, Losonczy, Kim, Chance, Magee, Buzsáki (bib45) 2012; 15 Wheeler, Groth, Ma, Barrett, Owen, Safa, Tsien (bib57) 2012; 149 Li, Tadross, Tsien (bib37) 2016; 351 Kamata, Sakagami, Tokumitsu, Owada, Fukunaga, Kondo (bib30) 2007; 57 Racioppi, Means (bib44) 2008; 29 Stark, Eichler, Roux, Fujisawa, Rotstein, Buzsáki (bib48) 2013; 80 Bhat, Dao, Terrillion, Arad, Smith, Soldatov, Gould (bib6) 2012; 99 Deisseroth, Heist, Tsien (bib18) 1998; 392 Aponte, Bischofberger, Jonas (bib3) 2008; 586 Deisseroth, Bito, Tsien (bib17) 1996; 16 Adler, Augustine, Duffy, Charlton (bib1) 1991; 11 Kawanishi, Harada, Tachikawa, Okubo, Shiraishi (bib32) 1999; 44 Wayman, Lee, Tokumitsu, Silva, Soderling (bib55) 2008; 59 D’amour, Froemke (bib15) 2015; 86 Luo, Li, Huang, Steinberg, Mattheisen, Liang, Donohoe, Shi, Chen, Yue (bib39) 2014; 19 Cohen, Tsien, Goff, Halassa (bib14) 2015; 167 Wayman, Impey, Marks, Saneyoshi, Grant, Derkach, Soderling (bib54) 2006; 50 Li, Xiong, Ibrahim, Yuan, Tao, Zhang (bib38) 2015; 25 Buzsáki, Chrobak (bib9) 1995; 5 Beasley, Zhang, Patten, Reynolds (bib4) 2002; 52 Mullins, Fishell, Tsien (bib60) 2016; 89 De Marco García, Karayannis, Fishell (bib16) 2011; 472 Johannessen, Delghandi, Moens (bib28) 2004; 16 Stedman, Uboha, Stedman, Nairn, Picciotto (bib49) 2004; 566 Zhang, Zhang, McQuade, Behbehani, Tsien, Xu (bib59) 2002; 30 Broadbelt, Jones (bib8) 2008; 42 Carlén, Meletis, Siegle, Cardin, Futai, Vierling-Claassen, Rühlmann, Jones, Deisseroth, Sheng (bib10) 2012; 17 Plath, Ohana, Dammermann, Errington, Schmitz, Gross, Mao, Engelsberg, Mahlke, Welzl (bib43) 2006; 52 Wang, Campos, Jamieson, Kaetzel, Dedman (bib53) 1995; 270 Bito, Deisseroth, Tsien (bib7) 1996; 87 Impey, McCorkle, Cha-Molstad, Dwyer, Yochum, Boss, McWeeney, Dunn, Mandel, Goodman (bib24) 2004; 119 Mikhaylova, Karpova, Bär, Bethge, YuanXiang, Chen, Zuschratter, Behnisch, Kreutz (bib41) 2014; 219 Wheeler, Barrett, Groth, Safa, Tsien (bib56) 2008; 183 Bhat (10.1016/j.neuron.2016.03.001_bib6) 2012; 99 Aponte (10.1016/j.neuron.2016.03.001_bib3) 2008; 586 Li (10.1016/j.neuron.2016.03.001_bib38) 2015; 25 Yu (10.1016/j.neuron.2016.03.001_bib58) 2014; 84 Adler (10.1016/j.neuron.2016.03.001_bib1) 1991; 11 Wayman (10.1016/j.neuron.2016.03.001_bib55) 2008; 59 Wheeler (10.1016/j.neuron.2016.03.001_bib56) 2008; 183 Spiegel (10.1016/j.neuron.2016.03.001_bib47) 2014; 157 Kamata (10.1016/j.neuron.2016.03.001_bib30) 2007; 57 Wheeler (10.1016/j.neuron.2016.03.001_bib57) 2012; 149 Lewis (10.1016/j.neuron.2016.03.001_bib36) 2012; 35 Cohen (10.1016/j.neuron.2016.03.001_bib13) 2015; 460 Benes (10.1016/j.neuron.2016.03.001_bib5) 2001; 25 Mullins (10.1016/j.neuron.2016.03.001_bib60) 2016; 89 Racioppi (10.1016/j.neuron.2016.03.001_bib44) 2008; 29 Stark (10.1016/j.neuron.2016.03.001_bib48) 2013; 80 Kinney (10.1016/j.neuron.2016.03.001_bib33) 2006; 26 Waltes (10.1016/j.neuron.2016.03.001_bib52) 2014; 133 Ch’ng (10.1016/j.neuron.2016.03.001_bib11) 2012; 150 Jones (10.1016/j.neuron.2016.03.001_bib29) 1994; 14 Buzsáki (10.1016/j.neuron.2016.03.001_bib9) 1995; 5 Hong (10.1016/j.neuron.2016.03.001_bib23) 2008; 60 De Marco García (10.1016/j.neuron.2016.03.001_bib16) 2011; 472 Stedman (10.1016/j.neuron.2016.03.001_bib49) 2004; 566 Deisseroth (10.1016/j.neuron.2016.03.001_bib17) 1996; 16 Gao (10.1016/j.neuron.2016.03.001_bib20) 2006; 345 Wayman (10.1016/j.neuron.2016.03.001_bib54) 2006; 50 Plath (10.1016/j.neuron.2016.03.001_bib43) 2006; 52 Jiao (10.1016/j.neuron.2016.03.001_bib27) 2011; 108 Kawaguchi (10.1016/j.neuron.2016.03.001_bib31) 1987; 416 Impey (10.1016/j.neuron.2016.03.001_bib24) 2004; 119 Beasley (10.1016/j.neuron.2016.03.001_bib4) 2002; 52 D’amour (10.1016/j.neuron.2016.03.001_bib15) 2015; 86 Takemoto-Kimura (10.1016/j.neuron.2016.03.001_bib51) 2007; 54 Royer (10.1016/j.neuron.2016.03.001_bib45) 2012; 15 Kawanishi (10.1016/j.neuron.2016.03.001_bib32) 1999; 44 Ma (10.1016/j.neuron.2016.03.001_bib40) 2014; 159 Luo (10.1016/j.neuron.2016.03.001_bib39) 2014; 19 Donato (10.1016/j.neuron.2016.03.001_bib19) 2013; 504 Jiang (10.1016/j.neuron.2016.03.001_bib25) 2006; 1 Takemoto-Kimura (10.1016/j.neuron.2016.03.001_bib50) 2003; 278 Jiang (10.1016/j.neuron.2016.03.001_bib26) 2005; 135 Klausberger (10.1016/j.neuron.2016.03.001_bib34) 2008; 321 Wang (10.1016/j.neuron.2016.03.001_bib53) 1995; 270 Agassandian (10.1016/j.neuron.2016.03.001_bib2) 2012; 23 Lau (10.1016/j.neuron.2016.03.001_bib35) 2012; 32 Bito (10.1016/j.neuron.2016.03.001_bib7) 1996; 87 Hashimoto (10.1016/j.neuron.2016.03.001_bib22) 2003; 23 Broadbelt (10.1016/j.neuron.2016.03.001_bib8) 2008; 42 Patz (10.1016/j.neuron.2016.03.001_bib42) 2004; 14 Deisseroth (10.1016/j.neuron.2016.03.001_bib18) 1998; 392 Zhang (10.1016/j.neuron.2016.03.001_bib59) 2002; 30 Schild (10.1016/j.neuron.2016.03.001_bib46) 2014; 84 Mikhaylova (10.1016/j.neuron.2016.03.001_bib41) 2014; 219 Carlén (10.1016/j.neuron.2016.03.001_bib10) 2012; 17 Gu (10.1016/j.neuron.2016.03.001_bib21) 1995; 375 Cohen (10.1016/j.neuron.2016.03.001_bib14) 2015; 167 Li (10.1016/j.neuron.2016.03.001_bib37) 2016; 351 Cohen (10.1016/j.neuron.2016.03.001_bib12) 2008; 24 Johannessen (10.1016/j.neuron.2016.03.001_bib28) 2004; 16 25583246 - Schizophr Res. 2015 Sep;167(1-3):98-107 18616423 - Annu Rev Cell Dev Biol. 2008;24:183-209 24442360 - Hum Genet. 2014 Jun;133(6):781-92 24855953 - Cell. 2014 May 22;157(5):1216-29 9515967 - Nature. 1998 Mar 12;392(6672):198-202 22723692 - J Neurosci. 2012 Jun 20;32(25):8521-31 10570922 - J Hum Genet. 1999;44(6):428-30 23958956 - Mol Psychiatry. 2014 Jul;19(7):774-83 21730187 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12131-6 16730662 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1606-10 16772171 - Neuron. 2006 Jun 15;50(6):897-909 18276734 - J Physiol. 2008 Apr 15;586(8):2061-75 17553424 - Neuron. 2007 Jun 7;54(5):755-70 23539133 - Brain Struct Funct. 2014 May;219(3):843-60 17088210 - Neuron. 2006 Nov 9;52(3):437-44 25303525 - Cell. 2014 Oct 9;159(2):281-94 22632974 - Cell. 2012 May 25;149(5):1112-24 22446878 - Nat Neurosci. 2012 May;15(5):769-75 22621903 - Mol Biol Cell. 2012 Jul;23(14):2755-69 24336286 - Nature. 2013 Dec 12;504(7479):272-6 14754872 - Cereb Cortex. 2004 Mar;14(3):342-51 17406298 - Nat Protoc. 2006;1(2):695-700 12637513 - J Biol Chem. 2003 May 16;278(20):18597-605 25998737 - Biochem Biophys Res Commun. 2015 Apr 24;460(1):88-99 24314731 - Neuron. 2013 Dec 4;80(5):1263-76 22770221 - Cell. 2012 Jul 6;150(1):207-21 11925568 - Nat Genet. 2002 Apr;30(4):416-20 8530438 - J Biol Chem. 1995 Dec 22;270(51):30245-8 21468034 - Mol Psychiatry. 2012 May;17(5):537-48 15337521 - Cell Signal. 2004 Nov;16(11):1211-27 11377916 - Neuropsychopharmacology. 2001 Jul;25(1):1-27 25467982 - Neuron. 2014 Dec 3;84(5):983-96 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10 18289558 - J Psychiatr Res. 2008 Jul;42(8):612-21 21460837 - Nature. 2011 Apr 21;472(7343):351-5 15147908 - FEBS Lett. 2004 May 21;566(1-3):275-80 18599766 - Science. 2008 Jul 4;321(5885):53-7 25467978 - Neuron. 2014 Dec 3;84(5):919-26 17056143 - Neurosci Res. 2007 Jan;57(1):86-97 12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15 16154277 - Neuroscience. 2005;135(3):839-50 8301355 - J Neurosci. 1994 Feb;14(2):611-29 7596410 - Nature. 1995 Jun 29;375(6534):784-7 19047462 - J Cell Biol. 2008 Dec 1;183(5):849-63 25843405 - Neuron. 2015 Apr 22;86(2):514-28 3304536 - Brain Res. 1987 Jul 28;416(2):369-74 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 18930438 - Trends Immunol. 2008 Dec;29(12):600-7 24425250 - Cereb Cortex. 2015 Jul;25(7):1782-91 22154068 - Trends Neurosci. 2012 Jan;35(1):57-67 22705413 - Prog Neurobiol. 2012 Oct;99(1):1-14 16452684 - J Neurosci. 2006 Feb 1;26(5):1604-15 19038219 - Neuron. 2008 Nov 26;60(4):610-24 18817731 - Neuron. 2008 Sep 25;59(6):914-31 8980227 - Cell. 1996 Dec 27;87(7):1203-14 1675264 - J Neurosci. 1991 Jun;11(6):1496-507 8562094 - Neuron. 1996 Jan;16(1):89-101 15620361 - Cell. 2004 Dec 29;119(7):1041-54 |
References_xml | – volume: 86 start-page: 514 year: 2015 end-page: 528 ident: bib15 article-title: Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex publication-title: Neuron – volume: 133 start-page: 781 year: 2014 end-page: 792 ident: bib52 article-title: Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders publication-title: Hum. Genet. – volume: 16 start-page: 89 year: 1996 end-page: 101 ident: bib17 article-title: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity publication-title: Neuron – volume: 59 start-page: 914 year: 2008 end-page: 931 ident: bib55 article-title: Calmodulin-kinases: modulators of neuronal development and plasticity publication-title: Neuron – volume: 351 start-page: 863 year: 2016 end-page: 867 ident: bib37 article-title: A slow coincidence detector that requires Ca2+ channel flux and conformational signals publication-title: Science – volume: 108 start-page: 12131 year: 2011 end-page: 12136 ident: bib27 article-title: A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 610 year: 2008 end-page: 624 ident: bib23 article-title: A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition publication-title: Neuron – volume: 54 start-page: 755 year: 2007 end-page: 770 ident: bib51 article-title: Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma publication-title: Neuron – volume: 32 start-page: 8521 year: 2012 end-page: 8531 ident: bib35 article-title: Activity-dependent regulation of inhibition via GAD67 publication-title: J. Neurosci. – volume: 167 start-page: 98 year: 2015 end-page: 107 ident: bib14 article-title: The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia publication-title: Schizophr. Res. – volume: 80 start-page: 1263 year: 2013 end-page: 1276 ident: bib48 article-title: Inhibition-induced theta resonance in cortical circuits publication-title: Neuron – volume: 23 start-page: 2755 year: 2012 end-page: 2769 ident: bib2 article-title: Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal publication-title: Mol. Biol. Cell – volume: 416 start-page: 369 year: 1987 end-page: 374 ident: bib31 article-title: Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin publication-title: Brain Res. – volume: 50 start-page: 897 year: 2006 end-page: 909 ident: bib54 article-title: Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2 publication-title: Neuron – volume: 119 start-page: 1041 year: 2004 end-page: 1054 ident: bib24 article-title: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions publication-title: Cell – volume: 11 start-page: 1496 year: 1991 end-page: 1507 ident: bib1 article-title: Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse publication-title: J. Neurosci. – volume: 89 start-page: 1131 year: 2016 end-page: 1156 ident: bib60 article-title: Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops publication-title: Neuron – volume: 472 start-page: 351 year: 2011 end-page: 355 ident: bib16 article-title: Neuronal activity is required for the development of specific cortical interneuron subtypes publication-title: Nature – volume: 99 start-page: 1 year: 2012 end-page: 14 ident: bib6 article-title: CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease publication-title: Prog. Neurobiol. – volume: 183 start-page: 849 year: 2008 end-page: 863 ident: bib56 article-title: CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling publication-title: J. Cell Biol. – volume: 504 start-page: 272 year: 2013 end-page: 276 ident: bib19 article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning publication-title: Nature – volume: 44 start-page: 428 year: 1999 end-page: 430 ident: bib32 article-title: Novel variants in the promoter region of the CREB gene in schizophrenic patients publication-title: J. Hum. Genet. – volume: 150 start-page: 207 year: 2012 end-page: 221 ident: bib11 article-title: Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus publication-title: Cell – volume: 14 start-page: 611 year: 1994 end-page: 629 ident: bib29 article-title: Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression publication-title: J. Neurosci. – volume: 5 start-page: 504 year: 1995 end-page: 510 ident: bib9 article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks publication-title: Curr. Opin. Neurobiol. – volume: 52 start-page: 708 year: 2002 end-page: 715 ident: bib4 article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins publication-title: Biol. Psychiatry – volume: 16 start-page: 1211 year: 2004 end-page: 1227 ident: bib28 article-title: What turns CREB on? publication-title: Cell. Signal. – volume: 392 start-page: 198 year: 1998 end-page: 202 ident: bib18 article-title: Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons publication-title: Nature – volume: 375 start-page: 784 year: 1995 end-page: 787 ident: bib21 article-title: Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients publication-title: Nature – volume: 87 start-page: 1203 year: 1996 end-page: 1214 ident: bib7 article-title: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression publication-title: Cell – volume: 321 start-page: 53 year: 2008 end-page: 57 ident: bib34 article-title: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations publication-title: Science – volume: 278 start-page: 18597 year: 2003 end-page: 18605 ident: bib50 article-title: Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK) publication-title: J. Biol. Chem. – volume: 42 start-page: 612 year: 2008 end-page: 621 ident: bib8 article-title: Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex publication-title: J. Psychiatr. Res. – volume: 84 start-page: 919 year: 2014 end-page: 926 ident: bib58 article-title: CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron publication-title: Neuron – volume: 586 start-page: 2061 year: 2008 end-page: 2075 ident: bib3 article-title: Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus publication-title: J. Physiol. – volume: 26 start-page: 1604 year: 2006 end-page: 1615 ident: bib33 article-title: A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons publication-title: J. Neurosci. – volume: 35 start-page: 57 year: 2012 end-page: 67 ident: bib36 article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia publication-title: Trends Neurosci. – volume: 219 start-page: 843 year: 2014 end-page: 860 ident: bib41 article-title: Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain publication-title: Brain Struct. Funct. – volume: 15 start-page: 769 year: 2012 end-page: 775 ident: bib45 article-title: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition publication-title: Nat. Neurosci. – volume: 25 start-page: 1 year: 2001 end-page: 27 ident: bib5 article-title: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder publication-title: Neuropsychopharmacology – volume: 29 start-page: 600 year: 2008 end-page: 607 ident: bib44 article-title: Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller publication-title: Trends Immunol. – volume: 84 start-page: 983 year: 2014 end-page: 996 ident: bib46 article-title: The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance publication-title: Neuron – volume: 157 start-page: 1216 year: 2014 end-page: 1229 ident: bib47 article-title: Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs publication-title: Cell – volume: 23 start-page: 6315 year: 2003 end-page: 6326 ident: bib22 article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia publication-title: J. Neurosci. – volume: 159 start-page: 281 year: 2014 end-page: 294 ident: bib40 article-title: γCaMKII shuttles Ca publication-title: Cell – volume: 30 start-page: 416 year: 2002 end-page: 420 ident: bib59 article-title: c-fos regulates neuronal excitability and survival publication-title: Nat. Genet. – volume: 345 start-page: 1606 year: 2006 end-page: 1610 ident: bib20 article-title: CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 342 year: 2004 end-page: 351 ident: bib42 article-title: Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development publication-title: Cereb. Cortex – volume: 149 start-page: 1112 year: 2012 end-page: 1124 ident: bib57 article-title: Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression publication-title: Cell – volume: 25 start-page: 1782 year: 2015 end-page: 1791 ident: bib38 article-title: Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex publication-title: Cereb. Cortex – volume: 19 start-page: 774 year: 2014 end-page: 783 ident: bib39 article-title: Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene publication-title: Mol. Psychiatry – volume: 566 start-page: 275 year: 2004 end-page: 280 ident: bib49 article-title: Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain publication-title: FEBS Lett. – volume: 17 start-page: 537 year: 2012 end-page: 548 ident: bib10 article-title: A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior publication-title: Mol. Psychiatry – volume: 270 start-page: 30245 year: 1995 end-page: 30248 ident: bib53 article-title: Functional elimination of calmodulin within the nucleus by targeted expression of an inhibitor peptide publication-title: J. Biol. Chem. – volume: 24 start-page: 183 year: 2008 end-page: 209 ident: bib12 article-title: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease publication-title: Annu. Rev. Cell Dev. Biol. – volume: 460 start-page: 88 year: 2015 end-page: 99 ident: bib13 article-title: Evolutionary and functional perspectives on signaling from neuronal surface to nucleus publication-title: Biochem. Biophys. Res. Commun. – volume: 1 start-page: 695 year: 2006 end-page: 700 ident: bib25 article-title: High Ca2+-phosphate transfection efficiency in low-density neuronal cultures publication-title: Nat. Protoc. – volume: 135 start-page: 839 year: 2005 end-page: 850 ident: bib26 article-title: A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons publication-title: Neuroscience – volume: 57 start-page: 86 year: 2007 end-page: 97 ident: bib30 article-title: Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth publication-title: Neurosci. Res. – volume: 52 start-page: 437 year: 2006 end-page: 444 ident: bib43 article-title: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories publication-title: Neuron – volume: 35 start-page: 57 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib36 article-title: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.10.004 – volume: 89 start-page: 1131 year: 2016 ident: 10.1016/j.neuron.2016.03.001_bib60 article-title: Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops publication-title: Neuron doi: 10.1016/j.neuron.2016.02.017 – volume: 50 start-page: 897 year: 2006 ident: 10.1016/j.neuron.2016.03.001_bib54 article-title: Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2 publication-title: Neuron doi: 10.1016/j.neuron.2006.05.008 – volume: 472 start-page: 351 year: 2011 ident: 10.1016/j.neuron.2016.03.001_bib16 article-title: Neuronal activity is required for the development of specific cortical interneuron subtypes publication-title: Nature doi: 10.1038/nature09865 – volume: 586 start-page: 2061 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib3 article-title: Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.147298 – volume: 14 start-page: 342 year: 2004 ident: 10.1016/j.neuron.2016.03.001_bib42 article-title: Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg132 – volume: 157 start-page: 1216 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib47 article-title: Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs publication-title: Cell doi: 10.1016/j.cell.2014.03.058 – volume: 57 start-page: 86 year: 2007 ident: 10.1016/j.neuron.2016.03.001_bib30 article-title: Spatiotemporal expression of four isoforms of Ca2+/calmodulin-dependent protein kinase I in brain and its possible roles in hippocampal dendritic growth publication-title: Neurosci. Res. doi: 10.1016/j.neures.2006.09.013 – volume: 566 start-page: 275 year: 2004 ident: 10.1016/j.neuron.2016.03.001_bib49 article-title: Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-alpha depends on a nuclear export signal in its regulatory domain publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.04.042 – volume: 135 start-page: 839 year: 2005 ident: 10.1016/j.neuron.2016.03.001_bib26 article-title: A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.06.073 – volume: 416 start-page: 369 year: 1987 ident: 10.1016/j.neuron.2016.03.001_bib31 article-title: Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin publication-title: Brain Res. doi: 10.1016/0006-8993(87)90921-8 – volume: 84 start-page: 983 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib46 article-title: The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance publication-title: Neuron doi: 10.1016/j.neuron.2014.10.039 – volume: 25 start-page: 1782 year: 2015 ident: 10.1016/j.neuron.2016.03.001_bib38 article-title: Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bht417 – volume: 23 start-page: 2755 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib2 article-title: Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-10-0863 – volume: 1 start-page: 695 year: 2006 ident: 10.1016/j.neuron.2016.03.001_bib25 article-title: High Ca2+-phosphate transfection efficiency in low-density neuronal cultures publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.86 – volume: 321 start-page: 53 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib34 article-title: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations publication-title: Science doi: 10.1126/science.1149381 – volume: 270 start-page: 30245 year: 1995 ident: 10.1016/j.neuron.2016.03.001_bib53 article-title: Functional elimination of calmodulin within the nucleus by targeted expression of an inhibitor peptide publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.51.30245 – volume: 375 start-page: 784 year: 1995 ident: 10.1016/j.neuron.2016.03.001_bib21 article-title: Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients publication-title: Nature doi: 10.1038/375784a0 – volume: 84 start-page: 919 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib58 article-title: CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron publication-title: Neuron doi: 10.1016/j.neuron.2014.10.046 – volume: 25 start-page: 1 year: 2001 ident: 10.1016/j.neuron.2016.03.001_bib5 article-title: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(01)00225-1 – volume: 26 start-page: 1604 year: 2006 ident: 10.1016/j.neuron.2016.03.001_bib33 article-title: A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4722-05.2006 – volume: 54 start-page: 755 year: 2007 ident: 10.1016/j.neuron.2016.03.001_bib51 article-title: Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIgamma publication-title: Neuron doi: 10.1016/j.neuron.2007.05.021 – volume: 87 start-page: 1203 year: 1996 ident: 10.1016/j.neuron.2016.03.001_bib7 article-title: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression publication-title: Cell doi: 10.1016/S0092-8674(00)81816-4 – volume: 159 start-page: 281 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib40 article-title: γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression publication-title: Cell doi: 10.1016/j.cell.2014.09.019 – volume: 52 start-page: 708 year: 2002 ident: 10.1016/j.neuron.2016.03.001_bib4 article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(02)01360-4 – volume: 99 start-page: 1 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib6 article-title: CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2012.06.001 – volume: 278 start-page: 18597 year: 2003 ident: 10.1016/j.neuron.2016.03.001_bib50 article-title: Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300578200 – volume: 23 start-page: 6315 year: 2003 ident: 10.1016/j.neuron.2016.03.001_bib22 article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-15-06315.2003 – volume: 150 start-page: 207 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib11 article-title: Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus publication-title: Cell doi: 10.1016/j.cell.2012.05.027 – volume: 29 start-page: 600 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib44 article-title: Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: novel routes for an ancient traveller publication-title: Trends Immunol. doi: 10.1016/j.it.2008.08.005 – volume: 32 start-page: 8521 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib35 article-title: Activity-dependent regulation of inhibition via GAD67 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1245-12.2012 – volume: 5 start-page: 504 year: 1995 ident: 10.1016/j.neuron.2016.03.001_bib9 article-title: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks publication-title: Curr. Opin. Neurobiol. doi: 10.1016/0959-4388(95)80012-3 – volume: 24 start-page: 183 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib12 article-title: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.24.110707.175235 – volume: 108 start-page: 12131 year: 2011 ident: 10.1016/j.neuron.2016.03.001_bib27 article-title: A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1105296108 – volume: 17 start-page: 537 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib10 article-title: A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior publication-title: Mol. Psychiatry doi: 10.1038/mp.2011.31 – volume: 42 start-page: 612 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib8 article-title: Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2007.07.006 – volume: 345 start-page: 1606 year: 2006 ident: 10.1016/j.neuron.2016.03.001_bib20 article-title: CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.05.066 – volume: 86 start-page: 514 year: 2015 ident: 10.1016/j.neuron.2016.03.001_bib15 article-title: Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex publication-title: Neuron doi: 10.1016/j.neuron.2015.03.014 – volume: 52 start-page: 437 year: 2006 ident: 10.1016/j.neuron.2016.03.001_bib43 article-title: Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories publication-title: Neuron doi: 10.1016/j.neuron.2006.08.024 – volume: 59 start-page: 914 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib55 article-title: Calmodulin-kinases: modulators of neuronal development and plasticity publication-title: Neuron doi: 10.1016/j.neuron.2008.08.021 – volume: 183 start-page: 849 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib56 article-title: CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling publication-title: J. Cell Biol. doi: 10.1083/jcb.200805048 – volume: 149 start-page: 1112 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib57 article-title: Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression publication-title: Cell doi: 10.1016/j.cell.2012.03.041 – volume: 60 start-page: 610 year: 2008 ident: 10.1016/j.neuron.2016.03.001_bib23 article-title: A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition publication-title: Neuron doi: 10.1016/j.neuron.2008.09.024 – volume: 14 start-page: 611 year: 1994 ident: 10.1016/j.neuron.2016.03.001_bib29 article-title: Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-02-00611.1994 – volume: 80 start-page: 1263 year: 2013 ident: 10.1016/j.neuron.2016.03.001_bib48 article-title: Inhibition-induced theta resonance in cortical circuits publication-title: Neuron doi: 10.1016/j.neuron.2013.09.033 – volume: 504 start-page: 272 year: 2013 ident: 10.1016/j.neuron.2016.03.001_bib19 article-title: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning publication-title: Nature doi: 10.1038/nature12866 – volume: 133 start-page: 781 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib52 article-title: Common variants in genes of the postsynaptic FMRP signalling pathway are risk factors for autism spectrum disorders publication-title: Hum. Genet. doi: 10.1007/s00439-013-1416-y – volume: 351 start-page: 863 year: 2016 ident: 10.1016/j.neuron.2016.03.001_bib37 article-title: A slow coincidence detector that requires Ca2+ channel flux and conformational signals publication-title: Science doi: 10.1126/science.aad3647 – volume: 19 start-page: 774 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib39 article-title: Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.103 – volume: 16 start-page: 1211 year: 2004 ident: 10.1016/j.neuron.2016.03.001_bib28 article-title: What turns CREB on? publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2004.05.001 – volume: 44 start-page: 428 year: 1999 ident: 10.1016/j.neuron.2016.03.001_bib32 article-title: Novel variants in the promoter region of the CREB gene in schizophrenic patients publication-title: J. Hum. Genet. doi: 10.1007/s100380050196 – volume: 167 start-page: 98 year: 2015 ident: 10.1016/j.neuron.2016.03.001_bib14 article-title: The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2014.12.026 – volume: 219 start-page: 843 year: 2014 ident: 10.1016/j.neuron.2016.03.001_bib41 article-title: Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0539-1 – volume: 460 start-page: 88 year: 2015 ident: 10.1016/j.neuron.2016.03.001_bib13 article-title: Evolutionary and functional perspectives on signaling from neuronal surface to nucleus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.02.146 – volume: 119 start-page: 1041 year: 2004 ident: 10.1016/j.neuron.2016.03.001_bib24 article-title: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions publication-title: Cell – volume: 392 start-page: 198 year: 1998 ident: 10.1016/j.neuron.2016.03.001_bib18 article-title: Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons publication-title: Nature doi: 10.1038/32448 – volume: 15 start-page: 769 year: 2012 ident: 10.1016/j.neuron.2016.03.001_bib45 article-title: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition publication-title: Nat. Neurosci. doi: 10.1038/nn.3077 – volume: 30 start-page: 416 year: 2002 ident: 10.1016/j.neuron.2016.03.001_bib59 article-title: c-fos regulates neuronal excitability and survival publication-title: Nat. Genet. doi: 10.1038/ng859 – volume: 11 start-page: 1496 year: 1991 ident: 10.1016/j.neuron.2016.03.001_bib1 article-title: Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-06-01496.1991 – volume: 16 start-page: 89 year: 1996 ident: 10.1016/j.neuron.2016.03.001_bib17 article-title: Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity publication-title: Neuron doi: 10.1016/S0896-6273(00)80026-4 – reference: 24314731 - Neuron. 2013 Dec 4;80(5):1263-76 – reference: 23958956 - Mol Psychiatry. 2014 Jul;19(7):774-83 – reference: 22705413 - Prog Neurobiol. 2012 Oct;99(1):1-14 – reference: 12372661 - Biol Psychiatry. 2002 Oct 1;52(7):708-15 – reference: 7596410 - Nature. 1995 Jun 29;375(6534):784-7 – reference: 8980227 - Cell. 1996 Dec 27;87(7):1203-14 – reference: 12637513 - J Biol Chem. 2003 May 16;278(20):18597-605 – reference: 9515967 - Nature. 1998 Mar 12;392(6672):198-202 – reference: 22621903 - Mol Biol Cell. 2012 Jul;23(14):2755-69 – reference: 18276734 - J Physiol. 2008 Apr 15;586(8):2061-75 – reference: 22154068 - Trends Neurosci. 2012 Jan;35(1):57-67 – reference: 15147908 - FEBS Lett. 2004 May 21;566(1-3):275-80 – reference: 24336286 - Nature. 2013 Dec 12;504(7479):272-6 – reference: 25998737 - Biochem Biophys Res Commun. 2015 Apr 24;460(1):88-99 – reference: 8562094 - Neuron. 1996 Jan;16(1):89-101 – reference: 21468034 - Mol Psychiatry. 2012 May;17(5):537-48 – reference: 8530438 - J Biol Chem. 1995 Dec 22;270(51):30245-8 – reference: 16730662 - Biochem Biophys Res Commun. 2006 Jul 14;345(4):1606-10 – reference: 22446878 - Nat Neurosci. 2012 May;15(5):769-75 – reference: 17056143 - Neurosci Res. 2007 Jan;57(1):86-97 – reference: 24425250 - Cereb Cortex. 2015 Jul;25(7):1782-91 – reference: 1675264 - J Neurosci. 1991 Jun;11(6):1496-507 – reference: 19038219 - Neuron. 2008 Nov 26;60(4):610-24 – reference: 18289558 - J Psychiatr Res. 2008 Jul;42(8):612-21 – reference: 15620361 - Cell. 2004 Dec 29;119(7):1041-54 – reference: 21730187 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12131-6 – reference: 22770221 - Cell. 2012 Jul 6;150(1):207-21 – reference: 8301355 - J Neurosci. 1994 Feb;14(2):611-29 – reference: 16452684 - J Neurosci. 2006 Feb 1;26(5):1604-15 – reference: 22632974 - Cell. 2012 May 25;149(5):1112-24 – reference: 14754872 - Cereb Cortex. 2004 Mar;14(3):342-51 – reference: 25843405 - Neuron. 2015 Apr 22;86(2):514-28 – reference: 11377916 - Neuropsychopharmacology. 2001 Jul;25(1):1-27 – reference: 23539133 - Brain Struct Funct. 2014 May;219(3):843-60 – reference: 18930438 - Trends Immunol. 2008 Dec;29(12):600-7 – reference: 11925568 - Nat Genet. 2002 Apr;30(4):416-20 – reference: 7488853 - Curr Opin Neurobiol. 1995 Aug;5(4):504-10 – reference: 16772171 - Neuron. 2006 Jun 15;50(6):897-909 – reference: 17406298 - Nat Protoc. 2006;1(2):695-700 – reference: 17553424 - Neuron. 2007 Jun 7;54(5):755-70 – reference: 25467982 - Neuron. 2014 Dec 3;84(5):983-96 – reference: 18616423 - Annu Rev Cell Dev Biol. 2008;24:183-209 – reference: 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 – reference: 15337521 - Cell Signal. 2004 Nov;16(11):1211-27 – reference: 25467978 - Neuron. 2014 Dec 3;84(5):919-26 – reference: 25303525 - Cell. 2014 Oct 9;159(2):281-94 – reference: 25583246 - Schizophr Res. 2015 Sep;167(1-3):98-107 – reference: 3304536 - Brain Res. 1987 Jul 28;416(2):369-74 – reference: 21460837 - Nature. 2011 Apr 21;472(7343):351-5 – reference: 16154277 - Neuroscience. 2005;135(3):839-50 – reference: 18599766 - Science. 2008 Jul 4;321(5885):53-7 – reference: 24442360 - Hum Genet. 2014 Jun;133(6):781-92 – reference: 18817731 - Neuron. 2008 Sep 25;59(6):914-31 – reference: 22723692 - J Neurosci. 2012 Jun 20;32(25):8521-31 – reference: 10570922 - J Hum Genet. 1999;44(6):428-30 – reference: 17088210 - Neuron. 2006 Nov 9;52(3):437-44 – reference: 24855953 - Cell. 2014 May 22;157(5):1216-29 – reference: 19047462 - J Cell Biol. 2008 Dec 1;183(5):849-63 |
SSID | ssj0014591 |
Score | 2.480313 |
Snippet | Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development,... Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 292 |
SubjectTerms | Acoustic Stimulation Animals Auditory Cortex - metabolism Calcium - metabolism Calcium-Calmodulin-Dependent Protein Kinases - metabolism Caveolin 1 - physiology Cyclic AMP Response Element-Binding Protein - metabolism Experiments Gene expression Immunoglobulins Interneurons - metabolism Interneurons - physiology Isoenzymes - metabolism Kinases Mice Neurons Neurons - metabolism Neurons - physiology Parvalbumins - metabolism Phosphorylation Rats Signal Transduction Statistical analysis Transcription, Genetic - physiology |
Title | Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons |
URI | https://dx.doi.org/10.1016/j.neuron.2016.03.001 https://www.ncbi.nlm.nih.gov/pubmed/27041500 https://www.proquest.com/docview/1785527884 https://www.proquest.com/docview/1783920995 https://www.proquest.com/docview/1787977772 https://pubmed.ncbi.nlm.nih.gov/PMC4866871 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIPgiuvlxdUoE8S3ctEnT9HHebQxll4EO7lvJbVJXmenY7Z3e_8M_2HOStngVHfhSaHNacprkfCTn_A4hbzJRg9ntlkwqkcMlcUyrpGLGCiN1oTNucL_jbK5OL-T7RbbYIbMhFwbDKnvZH2V6kNb9k2n_N6fXTTP9yHWB6OUiQZ2t-QLkMGaVYhLf4t14kiCzWDUPiBlSD-lzIcYrYEYiCmqiItRp8jf19Kf5-XsU5S9q6eQhedDbk_QwdvkR2XF-j-wfevClv27oWxoiPMPW-R65FwtPbvbJj-PvVQ_OzYK2GmQHnbVrzNH9TBtPz7FuEG7hN56dh-CuW0fjFmLgaEVjveAVNXTe3rorOjNn9EPjQTOyo766bgef6S6_mQ09QnHiq45iSgvte9DebOg8fu0xuTg5_jQ7ZX19BlZlBccq9ryWLjUuVU6C2VentbUC_A9rec0TW-MCB_-qwmVvl4mujZaprTINE8AqIZ6QXd9694xQXRfQaMSyKgrpdKWX1tnaKKu1rFKlJ0QMw1IO_wdraFyVQ5TalzKyXuJgllxgsN6EsPGt6wjecQd9Pox4uTUJS9Avd7x5MEyQshcCqzLJNeLbAQsT8npshuWLZzLGu3YdaMBCBTM9-ydNDmY6-EET8jTOuZGdNEeMBc6h61uzcSRA-PDtFt9cBhhxqZUCd_n5fzP9gtzHOzxbS_kB2e1u1u4lmGjd8lVYgz8BUkA_Gg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEGIvCDZghQFGQrxZdb6dx9Ft6thaTWKT-ma5scOChjOt6aD_B38wd3YSURBM4iUP8SXy2ef7sM-_I-RdEpXgdps5i9Mog0dgmEiDgikdqVjkIuEK9zsm03R8EX-cJbMNMuruwmBaZav7vU532rp9M2xHc3hdVcNPXOSIXh4FaLMFn90j98Eb4Cjax7MP_VFCnPiyeUDNkLy7P-eSvBxoJMKgBqnHOg3-Zp_-9D9_T6P8xS4dPSaPWoeS7vs-PyEbxm6TnX0LwfTXFX1PXYqn2zvfJg985cnVDvlx-L1o0bmZM1ed8qCjeomXdD_TytIzLByEe_iVZWcuu-vWUL-H6DhaUF8weEEVnda35oqO1ISeVBZMIztoy-s28Jvm8pta0QPUJ7ZoKN5poW0P6psVnfq_PSUXR4fnozFrCzSwIsk5lrHnZWxCZcLUxOD3lWGpdQQBiNa85IEucYVDgFXgutfzQJRKxKEuEgESoNMoekY2bW3NLqGizKFRRfMiz2MjCjHXRpcq1ULERZiKAYm6aZHd-GARjSvZpal9kZ51iZMpeYTZegPC-q-uPXrHHfRZN-NyTQolGJg7vtzrBES2WmAhg0wgwB2wMCBv-2ZYv3goo6ypl44GXFTw05N_0mTgp0MgNCDPvcz17IQZgixwDl1fk8aeAPHD11tsdelwxGORphAvv_hvpt-Qh-Pzyak8PZ6evCRb2IIHbSHfI5vNzdK8An-tmb926_EnWIVCPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation-Transcription+Coupling+in+Parvalbumin-Positive+Interneurons+Employs+a+Novel+CaM+Kinase-Dependent+Pathway+Distinct+from+Excitatory+Neurons&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Cohen%2C+Samuel+M&rft.au=Ma%2C+Huan&rft.au=Kuchibhotla%2C+Kishore+V&rft.au=Watson%2C+Brendon+O&rft.date=2016-04-20&rft.pub=Elsevier+Limited&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=90&rft.issue=2&rft.spage=292&rft_id=info:doi/10.1016%2Fj.neuron.2016.03.001&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4040349291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |