Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is po...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 90; no. 2; pp. 292 - 307 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.04.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2016.03.001 |
Cover
Summary: | Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
•Voltage-gated Ca2+ influx triggers nuclear translocation of CaM in PV+ interneurons•CaMK signaling promotes CREB phosphorylation and activates key genes in PV+ cells•γCaMKI, not γCaMKII, operates to shuttle CaM to the nucleus in PV+ cells•Low CaMKIV levels rate-limit CREB phosphorylation in PV+ cells
Activity-dependent gene regulation is critical for long-term plasticity. Cohen et al. demonstrate that PV+ cortical interneurons rely on a CaM kinase-dependent signaling pathway, hinging on γCaMKI and rate-limited by CaMKIV, to trigger CREB phosphorylation and gene expression. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0896-6273 1097-4199 1097-4199 |
DOI: | 10.1016/j.neuron.2016.03.001 |