基于温度植被干旱指数的江苏淮北地区农业旱情监测

为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 7; pp. 163 - 172
Main Author 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川
Format Journal Article
LanguageChinese
Published 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017 2014
南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.07.019

Cover

Abstract 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。
AbstractList P407.1%TP79; 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。
为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。
Abstract_FL This paper focuses on developing an agricultural droughty monitoring method in north Jiangsu province based on the measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to build soil moisture estimation model, we collected gravimetric water content of soil at experimental sites in 2011, measured the soil moisture of the sites in 2012, and downloaded the 8-day MODIS reflectance and land surface temperature data from January to May in 2011 and 2012 in this study region. The gravimetric water content of soil included soil moisture at 10 cm depth and at 20 cm depth. The used MODIS data have some noise from atmospheric effects, and some data can not be acquired because of cloud. Therefore, a Savitzky-Golay (S-G) filter method was selected to remove NDVI and LST noise, and generate lost NDVI and LST. Then, the Temperature-Vegetation Dryness Index (TVDI) was calculated from the re-created NDVI and LST data. A correlation analysis between TVDI and soil moisture at 10 cm and 20 cm depth were conducted. The results showed that TVDI was more correlative with soil moisture at 10 cm depth compared to at 20 cm depth, and that soil moisture at 10 cm depth was highly correlative with soil moisture at 20 cm depth. Based on the TVDI and soil moisture data at 10 cm depth, an empirical model for soil moisture estimation was built and validated. In addition, an empirical model was also built to describe the relationship between soil moisture at 10 cm and 20 cm depth. Finally, the two models was utilized to estimate soil moisture at 20 cm depth in the area from MODIS data, and the estimated soil moisture was used to monitor field droughty status with a criterion about wheat field draughty evaluation. The results show that S-G filter method removes the MODIS data noise, and can be used to generate the lost data. The correlation analysis between soil moisture and TVDI shows that TVDI has higher correlation with soil moisture at 10 cm depth, and a linear model can be used to best-fit the relationship between TVDI and the soil moisture at 10 cm depth. The correlation analysis between soil moisture at 10 cm depth and at 20 cm depth shows that soil moisture at 20 cm depth has higher correlation with soil moisture at 10 cm depth, and a linear model can be used to best-fit the relationship between soil moisture at 10 cm depth and at 20 cm depth. The validation experiments show that the model obtains a high accuracy of soil moisture estimation with an r2 of 0.575 and a RMSE of 2.59 %. Using this model, soil moisture maps at 10 cm depth were obtained. The linear model describing the relationship between soil moisture at 10 cm and 20 cm depth was used to obtain soil moisture maps at 20 cm depth. Wheat field draught maps in north Jiangsu Province were obtained by the criterion about wheat field draughty evaluation. Validation experiments showed that the experiments showed the droughty monitoring method was promising in monitoring the droughty, which appeared in north Jiangsu province.
Author 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川
AuthorAffiliation 南京信息工程大学气象灾害预报预警与评估协同创新中心、中国气象局气溶胶与云降水重点开放实验室 ,南京 210044 南京信息工程大学大气物理学院,南京210044 江苏省水利科学研究院,南京210017
AuthorAffiliation_xml – name: 南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044; 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017
Author_FL Li Zitian
Yan Jing
Min Jinzhong
Li Xinchuan
Bao Yansong
Wang Dongmei
Author_FL_xml – sequence: 1
  fullname: Bao Yansong
– sequence: 2
  fullname: Yan Jing
– sequence: 3
  fullname: Min Jinzhong
– sequence: 4
  fullname: Wang Dongmei
– sequence: 5
  fullname: Li Zitian
– sequence: 6
  fullname: Li Xinchuan
Author_xml – sequence: 1
  fullname: 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川
BookMark eNo9z0tLAlEYBuCzMMjMHxEErWY6Z-ZclyF2AaGNe5mrjdSxHKJcd1s4FS1CMEGICCIIDSKb3-M5-jMaMVq98PLwfbwrICebMgBgHUHTFlRsNswojqWJILQMypEwLYiwCZkJkciB_H-_DIpxHLmQIJtBiFEelNUgnaR3evym0lf9cjt7flc_n7o70smNfhxOe5d6NJh17vX3h0q6qj9USaqu-5Nxb24urqZPD_qrswqWQucwDop_WQDV7XK1tGtU9nf2SlsVwyNcGJRxjsLAYQIS6vuh5VkWIz6kwmeUYUSwLxyOKXJ5BjAJXM-DlCDq8pAFAtsFsLE4e-bI0JH1WqN52pLZw5ps171zd74asmxzJtcW0jtoyvpJlNnjVnTktNo1LBAWAtr2L9lqdBs
ClassificationCodes P407.1%TP79
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2014.07.019
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index
DocumentTitle_FL Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index
EndPage 172
ExternalDocumentID nygcxb201407019
49149903
GrantInformation_xml – fundername: 国家重点基础研究发展计划(973计划)资助项目; 中国博士后科学基金资助项目; 江苏高校优势学科建设工程资助项目
  funderid: (2013CB430101); (20090461131,201003596); 江苏高校优势学科建设工程资助项目
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c589-67881fea79056ddf2c2275d069d7674154d9a8461b805645ebcc06516b8f7e943
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:38:03 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords moderate-resolution imaging spectroradiometer (MODIS)
干旱
监测
soil moisture
drought
中分辨率成像光谱仪
temperature vegetation drought index (TVDI)
土壤湿度
remote sensing
遥感
monitoring
温度植被干旱指数
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c589-67881fea79056ddf2c2275d069d7674154d9a8461b805645ebcc06516b8f7e943
Notes 11-2047/S
Bao Yansong, Yan Jing, Min Jinzhong, Wang Dongmei, Li Zitian, Li Xinchuan (1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3. Jiangsu Hydraulic Research .Ins titute, Nanjing 21 0017, China)
This paper focuses on developing an agricultural droughty monitoring method in north Jiangsu province based on the measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to build soil moisture estimation model, we collected gravimetric water content of soil at experimental sites in 2011, measured the soil moisture of the sites in 2012, and downloaded the 8-day MODIS reflectance and land surface temperature data from January to May in 2011 and 2012 in this study regio
PageCount 10
ParticipantIDs wanfang_journals_nygcxb201407019
chongqing_primary_49149903
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2014
Publisher 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017
南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044
Publisher_xml – name: 南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044
– name: 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0540552
Snippet 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation...
P407.1%TP79; 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 163
SubjectTerms 中分辨率成像光谱仪
土壤湿度
干旱
温度植被干旱指数
监测
遥感
Title 基于温度植被干旱指数的江苏淮北地区农业旱情监测
URI http://lib.cqvip.com/qk/90712X/201407/49149903.html
https://d.wanfangdata.com.cn/periodical/nygcxb201407019
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFB9qC6IH8RNbP-ihOZWtO9nJJDkmu7MUQU8Velt2Zrftaau1Be3Vr0Or4kEKtVAQEUSQVhBr_xH_ge62f4bvvcnOTtv1Ey9DeElefu_93uy-hEnieWO4OTOJfVGQMEMuBFLKQlwUvBAkDV7SIm5whXuHb90OJ-8EN6fF9MDQ99xXS0uL8USy3Hdfyb-wCjLgFXfJ_gWzmVIQQBn4hScwDM8_4phFgukqs4ZFAT5VxKKQWcWMxiqQmBAlBhLGCotAzpmxVKWZ5VilJbM-FlSZKUkSqC2ySDINCgNS6OMo0F1ZpqokkcxEqAd6gQaEUaZeJEE8UAhRiMAUqjo0VokpQUNYpkliob3NJ8r9NAgalzoaAgMSU3E2KjBWdMOHRWRfarSCconGrzAb9ZqQXlQn0F9G5jsjVEGFgPTD0FVmir0mEp2dQgCYpkxuhhFFfhnF7y2gUsMKOYuoMqlhoDT1iM9M9ScWAgKZMzWThOhxwIdYNFEODi0inF5jMEAjrgiipIzcHIMxzuk0P8bF_4OYIVNIOHaX2N1SyEDgIB0EK40voi4nUV09xBAGtcKhsSpAM1ygVSgYBdmcGqYwoJBoAuAIrjj2IOh4-ZAQGttKP7QCC6qYqwrRITakcCpRIcNGvsIoJl-rrkIboAReKZTAk-M7h5rLTjOozRyiIzLfOENAYoLxPnzwco6t4y-mxPdF-TkE5JQ0NIAh7edIAkk3fKCBzQUL7xMmbuh0B7TLYjDNCZXLRdIfcJnLUnyXU6QJr5_enXU0lyrpUFMuhSonMpX4NWxA5x079YdPq289nE0exNimiBc9nPCGOC6UDnpDxlZstTdT83ExKkslOB7IEfZWPoRfwns3sq_18FsVQR-uOBgnvTGH8cavEOKJOXPzrdl7MA-gbZmtmXprNjeDmDrrnXFT_1GT_o6f8waW5857p83sgjv-qHnBi9qbu3u7Lzo7H9q77zvvnh-8_dj-9rmztt1ZfdZ5vbW__rizvXmw8rLz9VN7da29sdVe3W0_3djbWcc2j57sv3nV-bJy0ZuqRlPlyYK76KaQCKULIV7pMdOs41mJYaMxwxPOpWgUQ93Ao9ZgktvQdZgn-rEq4uFfzThJwHd-GKsZ2dRB6ZI32JpvNS97o_Wk3tQx5GSgIFBJWFeCy7oOm8Jv4GXnw95I5o_a3fQ8o1qg_QAmJaVhb9Q5qOb-5O7XjvA58vsmV7xTWE6Xqa96g4sLS81rMHFbjK-7IPgBNQcbwA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B8%A9%E5%BA%A6%E6%A4%8D%E8%A2%AB%E5%B9%B2%E6%97%B1%E6%8C%87%E6%95%B0%E7%9A%84%E6%B1%9F%E8%8B%8F%E6%B7%AE%E5%8C%97%E5%9C%B0%E5%8C%BA%E5%86%9C%E4%B8%9A%E6%97%B1%E6%83%85%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%B2%8D%E8%89%B3%E6%9D%BE&rft.au=%E4%B8%A5%E5%A9%A7&rft.au=%E9%97%B5%E9%94%A6%E5%BF%A0&rft.au=%E7%8E%8B%E5%86%AC%E6%A2%85&rft.date=2014&rft.pub=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%A4%A7%E6%B0%94%E7%89%A9%E7%90%86%E5%AD%A6%E9%99%A2%EF%BC%8C%E5%8D%97%E4%BA%AC+210044%25%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E6%B0%94%E8%B1%A1%E7%81%BE%E5%AE%B3%E9%A2%84%E6%8A%A5%E9%A2%84%E8%AD%A6%E4%B8%8E%E8%AF%84%E4%BC%B0%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E4%B8%AD%E5%9B%BD%E6%B0%94%E8%B1%A1%E5%B1%80%E6%B0%94%E6%BA%B6%E8%83%B6%E4%B8%8E%E4%BA%91%E9%99%8D%E6%B0%B4%E9%87%8D%E7%82%B9%E5%BC%80%E6%94%BE%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8D%97%E4%BA%AC%2C210044%25%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%B0%B4%E5%88%A9%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210017&rft.issn=1002-6819&rft.issue=7&rft.spage=163&rft.epage=172&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.07.019&rft.externalDocID=nygcxb201407019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg