基于温度植被干旱指数的江苏淮北地区农业旱情监测
为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用...
Saved in:
| Published in | 农业工程学报 Vol. 30; no. 7; pp. 163 - 172 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017
2014
南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2014.07.019 |
Cover
| Abstract | 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。 |
|---|---|
| AbstractList | P407.1%TP79; 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。 |
| Abstract_FL | This paper focuses on developing an agricultural droughty monitoring method in north Jiangsu province based on the measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to build soil moisture estimation model, we collected gravimetric water content of soil at experimental sites in 2011, measured the soil moisture of the sites in 2012, and downloaded the 8-day MODIS reflectance and land surface temperature data from January to May in 2011 and 2012 in this study region. The gravimetric water content of soil included soil moisture at 10 cm depth and at 20 cm depth. The used MODIS data have some noise from atmospheric effects, and some data can not be acquired because of cloud. Therefore, a Savitzky-Golay (S-G) filter method was selected to remove NDVI and LST noise, and generate lost NDVI and LST. Then, the Temperature-Vegetation Dryness Index (TVDI) was calculated from the re-created NDVI and LST data. A correlation analysis between TVDI and soil moisture at 10 cm and 20 cm depth were conducted. The results showed that TVDI was more correlative with soil moisture at 10 cm depth compared to at 20 cm depth, and that soil moisture at 10 cm depth was highly correlative with soil moisture at 20 cm depth. Based on the TVDI and soil moisture data at 10 cm depth, an empirical model for soil moisture estimation was built and validated. In addition, an empirical model was also built to describe the relationship between soil moisture at 10 cm and 20 cm depth. Finally, the two models was utilized to estimate soil moisture at 20 cm depth in the area from MODIS data, and the estimated soil moisture was used to monitor field droughty status with a criterion about wheat field draughty evaluation. The results show that S-G filter method removes the MODIS data noise, and can be used to generate the lost data. The correlation analysis between soil moisture and TVDI shows that TVDI has higher correlation with soil moisture at 10 cm depth, and a linear model can be used to best-fit the relationship between TVDI and the soil moisture at 10 cm depth. The correlation analysis between soil moisture at 10 cm depth and at 20 cm depth shows that soil moisture at 20 cm depth has higher correlation with soil moisture at 10 cm depth, and a linear model can be used to best-fit the relationship between soil moisture at 10 cm depth and at 20 cm depth. The validation experiments show that the model obtains a high accuracy of soil moisture estimation with an r2 of 0.575 and a RMSE of 2.59 %. Using this model, soil moisture maps at 10 cm depth were obtained. The linear model describing the relationship between soil moisture at 10 cm and 20 cm depth was used to obtain soil moisture maps at 20 cm depth. Wheat field draught maps in north Jiangsu Province were obtained by the criterion about wheat field draughty evaluation. Validation experiments showed that the experiments showed the droughty monitoring method was promising in monitoring the droughty, which appeared in north Jiangsu province. |
| Author | 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川 |
| AuthorAffiliation | 南京信息工程大学气象灾害预报预警与评估协同创新中心、中国气象局气溶胶与云降水重点开放实验室 ,南京 210044 南京信息工程大学大气物理学院,南京210044 江苏省水利科学研究院,南京210017 |
| AuthorAffiliation_xml | – name: 南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044; 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017 |
| Author_FL | Li Zitian Yan Jing Min Jinzhong Li Xinchuan Bao Yansong Wang Dongmei |
| Author_FL_xml | – sequence: 1 fullname: Bao Yansong – sequence: 2 fullname: Yan Jing – sequence: 3 fullname: Min Jinzhong – sequence: 4 fullname: Wang Dongmei – sequence: 5 fullname: Li Zitian – sequence: 6 fullname: Li Xinchuan |
| Author_xml | – sequence: 1 fullname: 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川 |
| BookMark | eNo9z0tLAlEYBuCzMMjMHxEErWY6Z-ZclyF2AaGNe5mrjdSxHKJcd1s4FS1CMEGICCIIDSKb3-M5-jMaMVq98PLwfbwrICebMgBgHUHTFlRsNswojqWJILQMypEwLYiwCZkJkciB_H-_DIpxHLmQIJtBiFEelNUgnaR3evym0lf9cjt7flc_n7o70smNfhxOe5d6NJh17vX3h0q6qj9USaqu-5Nxb24urqZPD_qrswqWQucwDop_WQDV7XK1tGtU9nf2SlsVwyNcGJRxjsLAYQIS6vuh5VkWIz6kwmeUYUSwLxyOKXJ5BjAJXM-DlCDq8pAFAtsFsLE4e-bI0JH1WqN52pLZw5ps171zd74asmxzJtcW0jtoyvpJlNnjVnTktNo1LBAWAtr2L9lqdBs |
| ClassificationCodes | P407.1%TP79 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1002-6819.2014.07.019 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index |
| DocumentTitle_FL | Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index |
| EndPage | 172 |
| ExternalDocumentID | nygcxb201407019 49149903 |
| GrantInformation_xml | – fundername: 国家重点基础研究发展计划(973计划)资助项目; 中国博士后科学基金资助项目; 江苏高校优势学科建设工程资助项目 funderid: (2013CB430101); (20090461131,201003596); 江苏高校优势学科建设工程资助项目 |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c589-67881fea79056ddf2c2275d069d7674154d9a8461b805645ebcc06516b8f7e943 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:18 EDT 2025 Wed Feb 14 10:38:03 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Keywords | moderate-resolution imaging spectroradiometer (MODIS) 干旱 监测 soil moisture drought 中分辨率成像光谱仪 temperature vegetation drought index (TVDI) 土壤湿度 remote sensing 遥感 monitoring 温度植被干旱指数 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c589-67881fea79056ddf2c2275d069d7674154d9a8461b805645ebcc06516b8f7e943 |
| Notes | 11-2047/S Bao Yansong, Yan Jing, Min Jinzhong, Wang Dongmei, Li Zitian, Li Xinchuan (1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3. Jiangsu Hydraulic Research .Ins titute, Nanjing 21 0017, China) This paper focuses on developing an agricultural droughty monitoring method in north Jiangsu province based on the measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to build soil moisture estimation model, we collected gravimetric water content of soil at experimental sites in 2011, measured the soil moisture of the sites in 2012, and downloaded the 8-day MODIS reflectance and land surface temperature data from January to May in 2011 and 2012 in this study regio |
| PageCount | 10 |
| ParticipantIDs | wanfang_journals_nygcxb201407019 chongqing_primary_49149903 |
| PublicationCentury | 2000 |
| PublicationDate | 2014 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2014 |
| Publisher | 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017 南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044 |
| Publisher_xml | – name: 南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044 – name: 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.0540552 |
| Snippet | 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation... P407.1%TP79; 为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 163 |
| SubjectTerms | 中分辨率成像光谱仪 土壤湿度 干旱 温度植被干旱指数 监测 遥感 |
| Title | 基于温度植被干旱指数的江苏淮北地区农业旱情监测 |
| URI | http://lib.cqvip.com/qk/90712X/201407/49149903.html https://d.wanfangdata.com.cn/periodical/nygcxb201407019 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1002-6819 databaseCode: FIJ dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 20151231 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0041925 providerName: Ingenta |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFB9qC6IH8RNbP-ihOZWtO9nJJDkmu7MUQU8Velt2Zrftaau1Be3Vr0Or4kEKtVAQEUSQVhBr_xH_ge62f4bvvcnOTtv1Ey9DeElefu_93uy-hEnieWO4OTOJfVGQMEMuBFLKQlwUvBAkDV7SIm5whXuHb90OJ-8EN6fF9MDQ99xXS0uL8USy3Hdfyb-wCjLgFXfJ_gWzmVIQQBn4hScwDM8_4phFgukqs4ZFAT5VxKKQWcWMxiqQmBAlBhLGCotAzpmxVKWZ5VilJbM-FlSZKUkSqC2ySDINCgNS6OMo0F1ZpqokkcxEqAd6gQaEUaZeJEE8UAhRiMAUqjo0VokpQUNYpkliob3NJ8r9NAgalzoaAgMSU3E2KjBWdMOHRWRfarSCconGrzAb9ZqQXlQn0F9G5jsjVEGFgPTD0FVmir0mEp2dQgCYpkxuhhFFfhnF7y2gUsMKOYuoMqlhoDT1iM9M9ScWAgKZMzWThOhxwIdYNFEODi0inF5jMEAjrgiipIzcHIMxzuk0P8bF_4OYIVNIOHaX2N1SyEDgIB0EK40voi4nUV09xBAGtcKhsSpAM1ygVSgYBdmcGqYwoJBoAuAIrjj2IOh4-ZAQGttKP7QCC6qYqwrRITakcCpRIcNGvsIoJl-rrkIboAReKZTAk-M7h5rLTjOozRyiIzLfOENAYoLxPnzwco6t4y-mxPdF-TkE5JQ0NIAh7edIAkk3fKCBzQUL7xMmbuh0B7TLYjDNCZXLRdIfcJnLUnyXU6QJr5_enXU0lyrpUFMuhSonMpX4NWxA5x079YdPq289nE0exNimiBc9nPCGOC6UDnpDxlZstTdT83ExKkslOB7IEfZWPoRfwns3sq_18FsVQR-uOBgnvTGH8cavEOKJOXPzrdl7MA-gbZmtmXprNjeDmDrrnXFT_1GT_o6f8waW5857p83sgjv-qHnBi9qbu3u7Lzo7H9q77zvvnh-8_dj-9rmztt1ZfdZ5vbW__rizvXmw8rLz9VN7da29sdVe3W0_3djbWcc2j57sv3nV-bJy0ZuqRlPlyYK76KaQCKULIV7pMdOs41mJYaMxwxPOpWgUQ93Ao9ZgktvQdZgn-rEq4uFfzThJwHd-GKsZ2dRB6ZI32JpvNS97o_Wk3tQx5GSgIFBJWFeCy7oOm8Jv4GXnw95I5o_a3fQ8o1qg_QAmJaVhb9Q5qOb-5O7XjvA58vsmV7xTWE6Xqa96g4sLS81rMHFbjK-7IPgBNQcbwA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B8%A9%E5%BA%A6%E6%A4%8D%E8%A2%AB%E5%B9%B2%E6%97%B1%E6%8C%87%E6%95%B0%E7%9A%84%E6%B1%9F%E8%8B%8F%E6%B7%AE%E5%8C%97%E5%9C%B0%E5%8C%BA%E5%86%9C%E4%B8%9A%E6%97%B1%E6%83%85%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%B2%8D%E8%89%B3%E6%9D%BE&rft.au=%E4%B8%A5%E5%A9%A7&rft.au=%E9%97%B5%E9%94%A6%E5%BF%A0&rft.au=%E7%8E%8B%E5%86%AC%E6%A2%85&rft.date=2014&rft.pub=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%A4%A7%E6%B0%94%E7%89%A9%E7%90%86%E5%AD%A6%E9%99%A2%EF%BC%8C%E5%8D%97%E4%BA%AC+210044%25%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E6%B0%94%E8%B1%A1%E7%81%BE%E5%AE%B3%E9%A2%84%E6%8A%A5%E9%A2%84%E8%AD%A6%E4%B8%8E%E8%AF%84%E4%BC%B0%E5%8D%8F%E5%90%8C%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E4%B8%AD%E5%9B%BD%E6%B0%94%E8%B1%A1%E5%B1%80%E6%B0%94%E6%BA%B6%E8%83%B6%E4%B8%8E%E4%BA%91%E9%99%8D%E6%B0%B4%E9%87%8D%E7%82%B9%E5%BC%80%E6%94%BE%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8D%97%E4%BA%AC%2C210044%25%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%B0%B4%E5%88%A9%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210017&rft.issn=1002-6819&rft.issue=7&rft.spage=163&rft.epage=172&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2014.07.019&rft.externalDocID=nygcxb201407019 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |