基于温度植被干旱指数的江苏淮北地区农业旱情监测

为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 30; no. 7; pp. 163 - 172
Main Author 鲍艳松 严婧 闵锦忠 王冬梅 李紫甜 李鑫川
Format Journal Article
LanguageChinese
Published 南京信息工程大学大气物理学院,南京 210044%南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京,210044%江苏省水利科学研究院,南京,210017 2014
南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶与云降水重点开放实验室 南京 210044
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2014.07.019

Cover

More Information
Summary:为实现江苏省淮北地区农业旱情监测,利用Savitzky-Golay(S-G)滤波方法,对2011-2012年江苏省淮北地区1-5月MODIS的归一化植被指数(normalized difference vegetation index, NDVI)和地表温度(land Surface temperature, LST)8 d产品进行重构,去除原8 d数据的噪声,填补受云影响而缺失的数据。基于重建后的NDVI和LST数据,计算温度植被干旱指数(temperature vegetation dryness index, TVDI);分析TVDI和土壤湿度之间的关系,构建土壤湿度反演模型。最后,利用另外1组数据验证所建土壤湿度模型的精度。研究结果表明:1)S-G滤波方法能够提高MODIS LST和NDVI数据质量,并能对缺失数据进行填补;2)TVDI方法能够实现试验区土壤湿度反演,所建模型在试验区具有一定的普适性,反演精度较高(R2=0.575,RMSE=2.59%);3)TVDI方法在江苏省淮北地区干旱监测中得到了较好的应用,能够成功地监测出江苏淮北地区2011年和2012年春旱。该研究可为农业旱情的快速监测提供借鉴。
Bibliography:11-2047/S
Bao Yansong, Yan Jing, Min Jinzhong, Wang Dongmei, Li Zitian, Li Xinchuan (1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3. Jiangsu Hydraulic Research .Ins titute, Nanjing 21 0017, China)
This paper focuses on developing an agricultural droughty monitoring method in north Jiangsu province based on the measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to build soil moisture estimation model, we collected gravimetric water content of soil at experimental sites in 2011, measured the soil moisture of the sites in 2012, and downloaded the 8-day MODIS reflectance and land surface temperature data from January to May in 2011 and 2012 in this study regio
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2014.07.019